-
高频天波探测设备在执行早期预警和海态遥感等任务时必须依靠电离层作为传播媒质, 而电离层具有时变、不稳定的特性, 会改变经过它传播的高频电磁波的特征, 导致回波频谱展宽, 严重影响了对目标的探测和海态参数的反演. 从色散效应、相位污染和多模传播等方面详细分析了回波谱展宽的原因和机理, 利用多层准抛物线电离层模型讨论了避免多模传播的选频措施. 针对在实际中较难解决的相位污染问题, 提出了一种不用估计回波瞬时频率的污染校正方法. 该方法利用了信号子空间与信号导频矢量张成空间的一致性原理, 能够较准确地估计出相位污染项, 实测数据处理表明新方法能够使展宽的回波谱得到有效锐化.High-frequency sky wave detection equipment must rely on the ionosphere as the propagation medium in the early warning and sea state remote sensing tasks. The ionosphere is time-varying and unstable, which will change the characteristics of the high-frequency electromagnetic wave propagating through it, resulting in the broadening of the echo spectrum, thus seriously affecting the detection of targets and the inversion of sea state parameters. The reason and mechanism of the echo spectrum expansion are analyzed in detail from the dispersion effect, phase contamination and multimode propagation. The bandwidth of the dispersion effect is different from that of the high frequency detection equipment. When the bandwidth of the sky wave equipment is 3–30 MHz, the bandwidths of the dispersion effect are 41.6–57.4 kHz and 0.17–10.8 MHz. The multi-quasi-parabolic ionospheric model is used to discuss the frequency selection measures to avoid multimode propagation. The modulation process of ionospheric contamination to echo is studied theoretically. It is shown that the non-linear phase contamination will cause the energy of echo to diffuse in frequency domain and to be unable to accumulate. To solve the problem of phase contamination which is difficult to solve in practice, a contamination correction method without estimating the instantaneous frequency of the echo is proposed. In the method the consistency principle of signal subspace and signal frequency vector expansion space is used, and therefore the phase contamination term can be well estimated. Based on the real data, the contamination correction results from the proposed method, phase gradient autofocus method, maximum entropy spectral analysis method and time-frequency processing method are given. The results show that the new method is a better method and can effectively sharpen the broadened echo spectrum.
-
Keywords:
- ionosphere /
- multi-quasi-parabolic model /
- high frequency ray /
- multimode propagation /
- phase contamination correction
[1] Frazer G J 2017 IEEE Aerosp. Electron. Syst. Mag. 32 52Google Scholar
[2] 罗欢, 肖卉 2018 物理学报 67 079401Google Scholar
Luo H, Xiao H 2018 Acta Phys. Sin. 67 079401Google Scholar
[3] 毛媛, 郭立新, 丁慧芬, 刘伟 2012 物理学报 61 044201Google Scholar
Mao Y, Guo L X, Ding H F, Liu W 2012 Acta Phys. Sin. 61 044201Google Scholar
[4] Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar Terr. Phys. 62 685Google Scholar
[5] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401Google Scholar
Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401Google Scholar
[6] 邢孟道, 保铮 2002 电波科学学报 17 129Google Scholar
Xing M D, Bao Z 2002 Chin. J. Radio Sci. 17 129Google Scholar
[7] Anderson S J, Abramovich Y I 1998 Radio Sci. 33 1055Google Scholar
[8] Lu K, Wang J, Liu X Z 2003 Proceedings of ICASSP Hongkong, China, April 6−10, 2003 p405
[9] Li Y J, Wei Y S, Zhu Y P, Wang Z Q, Xu R Q 2015 IET Signal Process. 9 562Google Scholar
[10] Luo H, Xiao H 2019 J. Chin. Inst. Eng. 42 200Google Scholar
[11] 罗欢, 陈建文, 鲍拯 2013 电子与信息学报 35 2829
Luo H, Chen J W, Bao Z 2013 J. Electron. Inform. Technol. 35 2829
[12] Bilitza D, Brown S A, Wang M Y 2012 J. Atmosph. Solar -Terr. Phys. 86 99Google Scholar
[13] Gordiyenko G I, Yakovets A F 2017 Adv. Space Res. 60 461Google Scholar
[14] Dyson P L, Bennett J A 1988 J. Atmosph. Solar Terr. Phys. 50 251Google Scholar
[15] Park I, Yeh K C 1990 Radio Sci. 25 1167Google Scholar
[16] 周芳 2014 博士学位论文 (西安: 西安电子科技大学)
Zhou F 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[17] 周文瑜, 焦培南 2008 超视距雷达技术 (北京: 电子工业出版社) 第120—122页
Zhou W Y, Jiao P N 2008 Over-the-Horizon Radar Technology (Beijing: Publishing House of Electronics Industry) pp120−122 (in Chinese)
[18] Skolnik M I 1990 Radar Handbook (New York: McGraw-Hill Book Company) pp18−19
[19] 郭文玲, 蔚娜, 李雪, 李吉宁, 鲁转侠 2014 中国电子科学研究院学报 9 629Google Scholar
Guo W L, Wei N, Li X, Li J N, Lu Z X 2014 J. CAEIT 9 629Google Scholar
[20] 李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311
Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311
[21] 柳文, 焦培南, 王世凯, 王俊江 2008 电波科学学报 25 41Google Scholar
Liu W, Jiao P N, Wang S K, Wang J J 2008 Chin. J. Radio Sci. 25 41Google Scholar
[22] Li M, He Q, Li K, He Z S 2014 IEICE Electron. Express 11 1
[23] 姚天任, 孙洪 1999 现代数字信号处理(武汉: 华中理工大学出版社) 第156, 157页
Yao T R, Sun H 1999 Modern Digital Signal Processing (Wuhan: Huazhong University of Technology Press) pp156, 157 (in Chinese)
[24] 徐青 2011 博士学位论文 (西安: 西安电子科技大学)
Xu Q 2011 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
-
-
[1] Frazer G J 2017 IEEE Aerosp. Electron. Syst. Mag. 32 52Google Scholar
[2] 罗欢, 肖卉 2018 物理学报 67 079401Google Scholar
Luo H, Xiao H 2018 Acta Phys. Sin. 67 079401Google Scholar
[3] 毛媛, 郭立新, 丁慧芬, 刘伟 2012 物理学报 61 044201Google Scholar
Mao Y, Guo L X, Ding H F, Liu W 2012 Acta Phys. Sin. 61 044201Google Scholar
[4] Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar Terr. Phys. 62 685Google Scholar
[5] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401Google Scholar
Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401Google Scholar
[6] 邢孟道, 保铮 2002 电波科学学报 17 129Google Scholar
Xing M D, Bao Z 2002 Chin. J. Radio Sci. 17 129Google Scholar
[7] Anderson S J, Abramovich Y I 1998 Radio Sci. 33 1055Google Scholar
[8] Lu K, Wang J, Liu X Z 2003 Proceedings of ICASSP Hongkong, China, April 6−10, 2003 p405
[9] Li Y J, Wei Y S, Zhu Y P, Wang Z Q, Xu R Q 2015 IET Signal Process. 9 562Google Scholar
[10] Luo H, Xiao H 2019 J. Chin. Inst. Eng. 42 200Google Scholar
[11] 罗欢, 陈建文, 鲍拯 2013 电子与信息学报 35 2829
Luo H, Chen J W, Bao Z 2013 J. Electron. Inform. Technol. 35 2829
[12] Bilitza D, Brown S A, Wang M Y 2012 J. Atmosph. Solar -Terr. Phys. 86 99Google Scholar
[13] Gordiyenko G I, Yakovets A F 2017 Adv. Space Res. 60 461Google Scholar
[14] Dyson P L, Bennett J A 1988 J. Atmosph. Solar Terr. Phys. 50 251Google Scholar
[15] Park I, Yeh K C 1990 Radio Sci. 25 1167Google Scholar
[16] 周芳 2014 博士学位论文 (西安: 西安电子科技大学)
Zhou F 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[17] 周文瑜, 焦培南 2008 超视距雷达技术 (北京: 电子工业出版社) 第120—122页
Zhou W Y, Jiao P N 2008 Over-the-Horizon Radar Technology (Beijing: Publishing House of Electronics Industry) pp120−122 (in Chinese)
[18] Skolnik M I 1990 Radar Handbook (New York: McGraw-Hill Book Company) pp18−19
[19] 郭文玲, 蔚娜, 李雪, 李吉宁, 鲁转侠 2014 中国电子科学研究院学报 9 629Google Scholar
Guo W L, Wei N, Li X, Li J N, Lu Z X 2014 J. CAEIT 9 629Google Scholar
[20] 李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311
Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311
[21] 柳文, 焦培南, 王世凯, 王俊江 2008 电波科学学报 25 41Google Scholar
Liu W, Jiao P N, Wang S K, Wang J J 2008 Chin. J. Radio Sci. 25 41Google Scholar
[22] Li M, He Q, Li K, He Z S 2014 IEICE Electron. Express 11 1
[23] 姚天任, 孙洪 1999 现代数字信号处理(武汉: 华中理工大学出版社) 第156, 157页
Yao T R, Sun H 1999 Modern Digital Signal Processing (Wuhan: Huazhong University of Technology Press) pp156, 157 (in Chinese)
[24] 徐青 2011 博士学位论文 (西安: 西安电子科技大学)
Xu Q 2011 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
计量
- 文章访问数: 7835
- PDF下载量: 39
- 被引次数: 0