搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深红色Mg1+yAl2-xO4:xMn4+,yMg2+荧光粉的合成与发光性质

彭玲玲 曹仕秀 赵聪 刘碧桃 韩涛 李凤 黎小敏

引用本文:
Citation:

深红色Mg1+yAl2-xO4:xMn4+,yMg2+荧光粉的合成与发光性质

彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏

Preparation of Mg1+yAl2-xO4:xMn4+, yMg2+ deep red phosphor and their optical properties

Peng Ling-Ling, Cao Shi-Xiu, Zhao Cong, Liu Bi-Tao, Han Tao, Li Feng, Li Xiao-Min
PDF
导出引用
  • 采用高温固相法在空气气氛中合成了新型Mg1+yAl2-xO4:xMn4+,yMg2+深红色荧光粉.利用X射线衍射仪、扫描电子显微镜和荧光光谱仪表征荧光粉的晶体结构和形貌,并分析了发光性质,讨论了掺杂不同浓度Mn4+和过量Mg2+对样品发光强度的影响.结果表明,在300 nm波长激发下样品发射652 nm波长的红光,归因于Mn4+的2Eg4A2g跃迁,Mn4+的最佳掺杂浓度为0.14%.采用Blasse公式计算了Mn4+-Mn4+之间能量传递的临界距离,讨论了可能的能量传递过程和引起浓度淬灭的原因,采用Tanabe-Sugano能级图从理论上计算和分析了Mn4+的d3电子构型的晶体场强度大小.过量Mg2+可以提高荧光粉的发光强度,同时导致了荧光寿命的缩短,荧光衰减曲线呈单指数变化.探讨了过量Mg2+增强发光强度的机理,阐述了深红色荧光粉MgAl2O4:Mn4+发光效率提高的原因.
    Exploration of efficient deep red phosphor based on non-rare-earth ion activated oxide is of great practical value in the field of phosphors converted white light-emitting diode lighting. A spinel Mg1+yAl2-xO4:xMn4+, yMg2+ phosphor with deep red emission is synthesized by a solid-state reaction route. The crystal structure and morphology are characterized by powder X-ray diffraction and scanning electron microscopy. The luminescent performance is characterized by fluorescence spectrophotometer and fluorescence decay curves. The results demonstrate that the synthesized phosphor shows that two excited spectrum bands centered at 290 nm and 438 nm cover a broad spectral region from 220 nm to 500 nm due to the Mn4+-O2- charge transfer band and the 4A2-4T1 and 4T2 transitions of Mn4+ ions. Upon excitation at 300 nm, a strong, narrow red emission band is observed between 600 and 700 nm peaked at 652 nm as a result of the spin-forbidden 2Eg-4A2g electron transition of Mn4+. The corresponding chromaticity coordinate is (0.7256, 0.2854). Additionally, the concentration quenching of Mn4+ in the MgAl2O4 host is evaluated in detail, which indicates that the optimum doping concentration of Mn4+ is experimentally determined to be 0.14 mol%. The critical distance is calculated to be 52.15 according to the Blasse equation, which elucidates that the concentration quenching mechanism is consequently very likely to be induced by the multipole-multipole interaction. The crystal field strength (Dq) and the Racah parameters (B and C) are estimated to evaluate the nephelauxetic effect of Mn4+ suffered in MgAl2O4:Mn4+ host lattice. Luminous mechanism is explained by Tanabe-Sugano energy level diagram of Mn4+ ion. The ratio of Dq/B equals 1.74, indicating that Mn4+ ions experience a weak crystal field in the MgAl2O4 host and emission peak energy of 2Eg-4A2g transition is dependent on the nephelauxetic effect. The red emission intensity of Mg1+yAl2-xO4:xMn4+, yMg2+ increases on account of excess Mg2+ which would compensate for the local charge balance surrounding Mn4+ ions, furthermore, lead the Mn4+-Mn4+ pairs connected with interstitial O2- to transform into isolated Mn4+ ions, and thus eliminating energy transfer and enhancing the luminescence efficiency effectively. The decay times of two time-dependent curves of Mg1+yAl2-xO4:xMn4+,yMg2+ are 0.672 ms and 0.604 ms, and each entire decay curve could be well-fitted to single-exponential, confirming that there is only a single Mn4+ ion luminescence center. The decay time of Mn4+ luminescence is prolonged with the increase of Mg2+ content, indicating that excitation energy transfer and non-radiative relaxation between Mn4+-Mn4+ pairs decrease, the reason is that photoexcitation energy can be temporarily stored in the trapping centers induced by excess positive charges. These results imply that Mn4+ doped Mg1+yAl2 -xO4:xMn4+, yMg2+ is a promising candidate of deep-red phosphors for near-UV and blue light emitting diodes. These findings in the paper would be beneficial not only to developing a low-cost and safe strategy to produce high-efficient Mn4+ activated luminescent materials for white light emitting diodes, but also to providing a new insight into improving the photoluminescence properties of Mn4+.
      通信作者: 彭玲玲, pengll08@126.com
    • 基金项目: 国家自然科学基金(批准号:51302330)、重庆市前沿与应用基础研究计划(批准号:cstc2015jcyjA50013,cstc2016shmszx20002,cstc2017jcyjA1821)、重庆市教委科学技术研究项目(批准号:KJ1501132,KJ1711272)和重庆市中青年骨干教师项目资助的课题.
      Corresponding author: Peng Ling-Ling, pengll08@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51302330), the Chongqing Natural Science Foundation, China (Grant Nos. cstc2015jcyjA50013, cstc2016shmszx20002, cstc2017jcyjA1821), the Science and Technology Research Foundation of the Education Commission of Chongqing City, China (Grant Nos. KJ1501132, KJ1711272), and the Funding Scheme for Youth Backbone Teachers of Universities in Chongqing, China.
    [1]

    Wang L, Zhang X, Hao Z, Luo Y, Zhang L, Zhong R, Zhang J 2012 J. Electrochem. Soc. 159 F68

    [2]

    Yeh C W, Chen W T, Liu R S, Hu S F, Sheu H S, Chen J M, Hintzen H T 2012 J. Am. Chem. Soc. 134 14108

    [3]

    Wang Y R, Liu X H, Niu P F, Jing L D, Zhao W R 2017 J. Lumin. 184 1

    [4]

    Pust P, Weiler V, Hecht C, Tcks A, Wochnik A S, Hen A K, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [5]

    Pavitra E, Raju G S R, Yu J S 2014 J. Alloys Compd. 592 157

    [6]

    Wang L L, Noh H M, Moon B K, Park S H, Kim K H, Shi J S, Jeong J H 2015 J. Phys. Chem. C 119 15517

    [7]

    Xu X H, Zhang W F, Yang D C, Lu W, Qiu J B, Yu S F 2016 Adv. Mater. 28 8045

    [8]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [9]

    Brik M G, Srivastava A M 2013 J. Lumin. 133 69

    [10]

    Du M H 2015 J. Lumin. 157 69

    [11]

    Shao Q Y, Wang L, Song L, Dong Y, Liang C, He J H, Jiang J Q 2017 J. Alloys Compd. 695 221

    [12]

    Lee M J, Song Y H, Song Y L, Han G S, Jung H S, Yoon D H 2015 Mater. Lett. 141 27

    [13]

    Medić M M, Brik M G, Dražić G, Antić Ž M, Lojpur V M, Dramićanin M D 2015 J. Phys. Chem. C 119 724

    [14]

    Fu A J, Zhou C Y, Chen Q, Lu Z Z, Huang T J, Wang H, Zhou L Y 2017 Ceram. Int. 43 6353

    [15]

    Xu W, Chen D Q, Yuan S, Zhou Y, Li S C 2017 Chem. Eng. J. 317 854

    [16]

    Wang B, Lin H, Xu J, Chen H, Wang Y 2014 ACS Appl. Mater. Inter 6 22905

    [17]

    Pan Y X, Liu G K 2011 J. Lumin. 131 465

    [18]

    Cao R P, Luo W J, Xu H D, Luo Z Y, Hu Q L, Fu T, Peng D D 2016 Opt. Mater. 53 169

    [19]

    Xu Y D, Wang D, Wang L, Ding N, Shi M, Zhong J G, Qi S 2013 J. Alloys Compd. 550 226

    [20]

    Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S 2016 Chem. Mater. 28 3515

  • [1]

    Wang L, Zhang X, Hao Z, Luo Y, Zhang L, Zhong R, Zhang J 2012 J. Electrochem. Soc. 159 F68

    [2]

    Yeh C W, Chen W T, Liu R S, Hu S F, Sheu H S, Chen J M, Hintzen H T 2012 J. Am. Chem. Soc. 134 14108

    [3]

    Wang Y R, Liu X H, Niu P F, Jing L D, Zhao W R 2017 J. Lumin. 184 1

    [4]

    Pust P, Weiler V, Hecht C, Tcks A, Wochnik A S, Hen A K, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [5]

    Pavitra E, Raju G S R, Yu J S 2014 J. Alloys Compd. 592 157

    [6]

    Wang L L, Noh H M, Moon B K, Park S H, Kim K H, Shi J S, Jeong J H 2015 J. Phys. Chem. C 119 15517

    [7]

    Xu X H, Zhang W F, Yang D C, Lu W, Qiu J B, Yu S F 2016 Adv. Mater. 28 8045

    [8]

    Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]

    [9]

    Brik M G, Srivastava A M 2013 J. Lumin. 133 69

    [10]

    Du M H 2015 J. Lumin. 157 69

    [11]

    Shao Q Y, Wang L, Song L, Dong Y, Liang C, He J H, Jiang J Q 2017 J. Alloys Compd. 695 221

    [12]

    Lee M J, Song Y H, Song Y L, Han G S, Jung H S, Yoon D H 2015 Mater. Lett. 141 27

    [13]

    Medić M M, Brik M G, Dražić G, Antić Ž M, Lojpur V M, Dramićanin M D 2015 J. Phys. Chem. C 119 724

    [14]

    Fu A J, Zhou C Y, Chen Q, Lu Z Z, Huang T J, Wang H, Zhou L Y 2017 Ceram. Int. 43 6353

    [15]

    Xu W, Chen D Q, Yuan S, Zhou Y, Li S C 2017 Chem. Eng. J. 317 854

    [16]

    Wang B, Lin H, Xu J, Chen H, Wang Y 2014 ACS Appl. Mater. Inter 6 22905

    [17]

    Pan Y X, Liu G K 2011 J. Lumin. 131 465

    [18]

    Cao R P, Luo W J, Xu H D, Luo Z Y, Hu Q L, Fu T, Peng D D 2016 Opt. Mater. 53 169

    [19]

    Xu Y D, Wang D, Wang L, Ding N, Shi M, Zhong J G, Qi S 2013 J. Alloys Compd. 550 226

    [20]

    Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S 2016 Chem. Mater. 28 3515

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质. 物理学报, 2021, 70(13): 133101. doi: 10.7498/aps.70.20210708
    [3] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [4] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [5] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [6] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [7] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [8] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [9] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [10] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [11] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质. 物理学报, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [13] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [14] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [15] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [16] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [17] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [18] 姜海青, 姚 熹, 车 俊, 汪敏强. ZnSe/SiO2复合薄膜光学常数与荧光光谱的研究. 物理学报, 2006, 55(4): 2084-2091. doi: 10.7498/aps.55.2084
    [19] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [20] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究. 物理学报, 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
计量
  • 文章访问数:  6491
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 修回日期:  2018-06-20
  • 刊出日期:  2019-09-20

/

返回文章
返回