搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应扩散系统中反螺旋波与反靶波的数值研究

倪之玮 李新政 白占国 李燕

引用本文:
Citation:

反应扩散系统中反螺旋波与反靶波的数值研究

倪之玮, 李新政, 白占国, 李燕

Numerical investigation on antispiral and antitarget wave in reaction diffusion system

Ni Zhi-Wei, Li Xin-Zheng, Bai Zhan-Guo, Li Yan
PDF
导出引用
  • 采用三变量Brusselator扩展模型在二维空间对反应扩散系统中反螺旋波和反靶波进行了数值模拟,利用色散关系和参量的时空变化研究了反螺旋波与反靶波的形成机制和时空特性,分析了方程参数对反螺旋波与反靶波的影响,获得了多种不同臂数的反螺旋波.模拟结果表明:反螺旋波源于波失稳、霍普失稳,或两种失稳的共同作用,而在反靶波中除上述两种失稳外还同时存在图灵失稳,波的传播方向均由外向内;反螺旋波波头的相位运动方向与波的走向相同,且旋转周期随臂数的增加逐渐增大;多臂数的反螺旋波由于受微扰及边界条件的影响,在波头的持续旋转运动中可以向臂数少的反螺旋波发生转变,并且在一定条件下单臂反螺旋波可实现到反靶波的转变;当不活跃中间物质的浓度的扩散系数超过临界值时,波的传播方向发生改变,系统可以实现反螺旋波到螺旋波以及反靶波到靶波的转变.
    In this paper, the antispiral and antitarget wave patterns in two-dimensional space are investigated numerically by Brusselator model with three components. The formation mechanism and spatiotemporal characteristics of these two waves are studied by analyzing dispersion relation and spatiotemporal variation of parameters of model equation. The influences of equation parameters on antispiral and antitarget wave are also analyzed. Various kinds of multi-armed antispiral are obtained, such as the two-armed, three-armed, four-armed, five-armed, and six-armed antispirals. The results show that antispirals may exist in a reaction-diffusion system, when the system is in the Hopf instability or the vicinity of wave instability. In addition to the above two types of instabilities, there is the Turing instability when the antitarget wave emerges. They have the periodicity in space and time, and their propagation directions are from outside to inward (the phase velocity vp 0), just as the incoming waves disappear in the center. The rotation directions of the various antispiral tips are the same as those of the waves, which can be rotated clockwise or anticlockwise, and the rotation period of wave-tip increases with the number of arms. Furthermore, it is found that the collision sequence of the multi-armed antispiral tip is related to the rotation direction of the wave-tip. With the increase of the number of anti-spiral arms, not only the dynamic behavior of the wave-tip turns more complex, but also the radius of the center region increases. Due to the influence of perturbation and boundary conditions, the multi-armed antispiral pattern can lose one arm and become a new antispiral pattern in the rotating process. Under certain conditions, it can be realized that the single-armed antispiral wave transforms into an antitarget wave. It is found that the change of control parameters of a and b can induce the regular changes of the space scale of antispiral waves, and antispiral waves gradually turn sparse with the increase of a, on the contrary, they gradually become dense with the increase of b. When the parameter of D_w exceeds a critical value, the propagation direction of wave is changed, and the system can produce the transformation from antispiral wave to spiral wave and from antitarget wave to target wave.
      通信作者: 李新政, tjiali123@163.com
    • 基金项目: 河北省自然科学基金(批准号:A2017208081)和河北省教育厅重点项目(批准号:ZD2016025)资助的课题.
      Corresponding author: Li Xin-Zheng, tjiali123@163.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2017208081) and the Major Project of Educational Commission of Hebei Province, China (Grant No. ZD2016025).
    [1]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533

    [2]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471

    [3]

    Lodahl P, Bache M, Saffman M 2000 Phys. Rev. Lett. 85 4506

    [4]

    Sawai S, Thomason P A, Cox E C 2005 Nature 433 323

    [5]

    Zaritski R M, Pertsov A M 2002 Phys. Rev. E 66 066120

    [6]

    Guo H Y, Li L, Ouyang Q 2003 J. Chem. Phys. 118 5038

    [7]

    Cai M C, Pan J T, Zhang H 2014 Phys. Rev. E 89 022920

    [8]

    Hendrey M, Ott E, Antonsen T M 2000 Phys. Rev. E 61 4943

    [9]

    Vaidelys M, Lu C, Cheng Y J, Ragulskis M 2017 Physica A 467 1

    [10]

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502 (in Chinese) [汪芃, 李倩昀, 唐国宁 2018 物理学报 67 030502]

    [11]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [12]

    Li T C, Gao X, Zheng F F, Pan D B, Zheng B, Zhang H 2017 Sci. Rep. 7 8657

    [13]

    Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese) [袁国勇, 张焕, 王光瑞 2013 物理学报 62 160502]

    [14]

    Liu W B, Dong L F 2015 Acta Phys. Sin. 64 245202 (in Chinese) [刘伟波, 董丽芳 2015 物理学报 64 245202]

    [15]

    Vasiev B, Siegert F, Weijer C 1997 Phys. Rev. Lett. 78 2489

    [16]

    Bursac N, Aguel F, Tung L 2004 Proc. Natl. Acad. Sci. 101 15530

    [17]

    Deng L Y, Zhang H, Li Y Q 2009 Phys. Rev. E 79 036107

    [18]

    Hagan P S 1982 Siam. J. Appl. Math. 42 762

    [19]

    Gao J, Wang Q, L H P 2017 Chem. Phys. Lett. 685 205

    [20]

    Vanag V K, Epstein I R 2001 Science 294 835

    [21]

    Gong Y F, Christini D J 2003 Phys. Rev. Lett. 90 088302

    [22]

    Wang C, Zhang C X, Ouyang Q 2006 Phys. Rev. E 74 036208

    [23]

    Nicola E M, Brusch L, Br M 2004 J. Phys. Chem. B 108 14733

    [24]

    Qian Y, Huang X D, Liao X H, Hu G 2010 Chin. Phys. B 19 050513

    [25]

    Yang L F, Epstein I R 2002 J. Phys. Chem. A 106 11676

    [26]

    Vanag V K, Epstein I R 2002 Phys. Rev. Lett. 88 088303

    [27]

    Plapp B B, Bodenschatz E 1996 Phys. Scr. 1996 111

  • [1]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533

    [2]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471

    [3]

    Lodahl P, Bache M, Saffman M 2000 Phys. Rev. Lett. 85 4506

    [4]

    Sawai S, Thomason P A, Cox E C 2005 Nature 433 323

    [5]

    Zaritski R M, Pertsov A M 2002 Phys. Rev. E 66 066120

    [6]

    Guo H Y, Li L, Ouyang Q 2003 J. Chem. Phys. 118 5038

    [7]

    Cai M C, Pan J T, Zhang H 2014 Phys. Rev. E 89 022920

    [8]

    Hendrey M, Ott E, Antonsen T M 2000 Phys. Rev. E 61 4943

    [9]

    Vaidelys M, Lu C, Cheng Y J, Ragulskis M 2017 Physica A 467 1

    [10]

    Wang P, Li Q Y, Tang G N 2018 Acta Phys. Sin. 67 030502 (in Chinese) [汪芃, 李倩昀, 唐国宁 2018 物理学报 67 030502]

    [11]

    Ma J, Xu Y, Wang C N, Jin W Y 2016 Physica A 461 586

    [12]

    Li T C, Gao X, Zheng F F, Pan D B, Zheng B, Zhang H 2017 Sci. Rep. 7 8657

    [13]

    Yuan G Y, Zhang H, Wang G R 2013 Acta Phys. Sin. 62 160502 (in Chinese) [袁国勇, 张焕, 王光瑞 2013 物理学报 62 160502]

    [14]

    Liu W B, Dong L F 2015 Acta Phys. Sin. 64 245202 (in Chinese) [刘伟波, 董丽芳 2015 物理学报 64 245202]

    [15]

    Vasiev B, Siegert F, Weijer C 1997 Phys. Rev. Lett. 78 2489

    [16]

    Bursac N, Aguel F, Tung L 2004 Proc. Natl. Acad. Sci. 101 15530

    [17]

    Deng L Y, Zhang H, Li Y Q 2009 Phys. Rev. E 79 036107

    [18]

    Hagan P S 1982 Siam. J. Appl. Math. 42 762

    [19]

    Gao J, Wang Q, L H P 2017 Chem. Phys. Lett. 685 205

    [20]

    Vanag V K, Epstein I R 2001 Science 294 835

    [21]

    Gong Y F, Christini D J 2003 Phys. Rev. Lett. 90 088302

    [22]

    Wang C, Zhang C X, Ouyang Q 2006 Phys. Rev. E 74 036208

    [23]

    Nicola E M, Brusch L, Br M 2004 J. Phys. Chem. B 108 14733

    [24]

    Qian Y, Huang X D, Liao X H, Hu G 2010 Chin. Phys. B 19 050513

    [25]

    Yang L F, Epstein I R 2002 J. Phys. Chem. A 106 11676

    [26]

    Vanag V K, Epstein I R 2002 Phys. Rev. Lett. 88 088303

    [27]

    Plapp B B, Bodenschatz E 1996 Phys. Scr. 1996 111

  • [1] 陆源杉, 肖敏, 万佑红, 丁洁, 蒋海军. 交叉扩散驱动的SI模型空间斑图. 物理学报, 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [2] 孟星柔, 刘若琪, 贺亚峰, 邓腾坤, 刘富成. 反应扩散系统中交叉扩散引发的图灵斑图之间的转变. 物理学报, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [3] 刘倩, 田淼, 范伟丽, 贾萌萌, 马凤娜, 刘富成. 空间周期性驱动对双层耦合反应扩散系统中图灵斑图的影响. 物理学报, 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [4] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成. 异质环境下各向异性扩散对图灵斑图的影响. 物理学报, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [5] 刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽. 双层耦合非对称反应扩散系统中的振荡图灵斑图. 物理学报, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [6] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图. 物理学报, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [7] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [8] 白占国, 刘富成, 董丽芳. 六边形格子态斑图的数值模拟. 物理学报, 2015, 64(21): 210505. doi: 10.7498/aps.64.210505
    [9] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散. 物理学报, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [10] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [11] 李新政, 白占国, 李燕, 赵昆, 贺亚峰. 双层非线性耦合反应扩散系统中复杂Turing斑图. 物理学报, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [12] 贺亚峰, 冯晓敏, 张亮. 气体放电系统中时空斑图的时滞反馈控制. 物理学报, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [13] 董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红. 介质阻挡放电跃变升压模式下靶波斑图研究. 物理学报, 2011, 60(6): 065206. doi: 10.7498/aps.60.065206
    [14] 潘靖, 周岚, 胡经国. 交换偏置系统中的反铁磁磁化与自旋波. 物理学报, 2009, 58(9): 6487-6493. doi: 10.7498/aps.58.6487
    [15] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [16] 郭 璐, 卫 栋, 陈海霞, 熊德智, 王鹏军, 张 靖. 铷原子热蒸气中强非线性效应产生激光模式图样的实验研究. 物理学报, 2008, 57(7): 4224-4229. doi: 10.7498/aps.57.4224
    [17] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [18] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [19] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [20] 何兵, 应和平, 季达人. X-Y-Z模型——非各向同性反铁磁Heisenberg系统的自旋波解. 物理学报, 1996, 45(3): 522-527. doi: 10.7498/aps.45.522
计量
  • 文章访问数:  5850
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 修回日期:  2018-06-29
  • 刊出日期:  2019-09-20

/

返回文章
返回