搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层非线性耦合反应扩散系统中复杂Turing斑图

李新政 白占国 李燕 赵昆 贺亚峰

引用本文:
Citation:

双层非线性耦合反应扩散系统中复杂Turing斑图

李新政, 白占国, 李燕, 赵昆, 贺亚峰

Complex Turing patterns in two-layer non-linearly coupling reaction diffusion systems

Li Xin-Zheng, Bai Zhan-Guo, Li Yan, Zhao Kun, He Ya-Feng
PDF
导出引用
  • 采用双层耦合的Brusselator模型, 研究了两个子系统非线性耦合时Turing 模对斑图的影响, 发现两子系统Turing 模的波数比和耦合系数的大小对斑图的形成起着重要作用. 模拟结果表明: 斑图类型随波数比值的增加, 从简单斑图发展到复杂斑图; 非线性耦合项系数在0–0.1时, 系统1中短波模在系统2失稳模的影响下不仅可形成简单六边形、四边形和条纹斑图, 两模共振耦合还可以形成蜂窝六边形、超六边形和复杂的黑眼斑图等超点阵图形, 首次在一定范围内调整控制参量观察到由简单正四边形向超六边形斑图的转化过程; 耦合系数在0.1–1时, 系统1中短波模与系统2失稳模未发生共振耦合仅观察到与系统2相同形状的简单六边形、四边形和条纹斑图.
    The influence of Turing modes in two subsystems on pattern formation is investigated by the two-layer non-linearly coupled Brusselator model. It is found that the coupling coefficient and wave number ratio between two Turing modes take an important role in the pattern formation and pattern selection. The kind of pattern changes from simple pattern to complex one with the increase of wave number ratio. When nonlinear coupling coefficient is smaller than 0.1, the short wave mode in system 1 under the action of instability mode in system 2 can form not only simple pattern (such as simple hexagon and quadrilateral and stripe pattern), but also complex pattern due to the resonance coupling between the two Turing modes (such as honeycomb hexagon and super hexagon and complex black-eye pattern), and the transformation process of pattern from quadrilateral to superlattice pattern is observed for the first time under the specific parameters. When nonlinear coupling coefficient is more than 0.1, the simple patterns such as simple hexagon and stripe pattern are obtained only in system 1, because there is no resonance coupling between the two Turing modes in system 1.
    • 基金项目: 国家自然科学基金(批准号: 11247242)、国家自然科学基金青年科学基金(批准号: 51201057)和河北科技大学科研基金(批准号: QD201225, QD201226)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247242), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51201057), and the Foundation of Hebei University of Science and Technology, China (Grant Nos. QD201225, QD201226).
    [1]

    Schenk C P, Or-Guil M, Bode M, Purwins H G 1997 Phys. Rev. Lett. 78 3781

    [2]

    Berenstein I, Dolnik M, Yang L, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. E 70 046219

    [3]

    Arbell H, Fineberg J 2002 Phys. Rev. E 65 036224

    [4]

    Sharpe J P, Ramazza P L, Sungar N, Saunders K 2006 Phys. Rev. Lett. 96 094101

    [5]

    Bois J S, Jlicher F, Grill S W 2011 Phys. Rev. Lett. 106 028103

    [6]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303

    [7]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302

    [8]

    Turing A M 1952 Phil. Trans. R. Soc. London B 237 37

    [9]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206

    [10]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [11]

    Stollenwerk L, Laven J G, Purwins H G 2007 Phys. Rev. Lett. 98 255001

    [12]

    Shirafuji T, Kitagawa T, Wakai T, Tachibana K 2003 Appl. Phys. Lett. 83 2309

    [13]

    Shin J, Raja L L 2007 J. Phys. D: Appl. Phys. 40 3145

    [14]

    Liu C Z, Brown N, Meenan B J 2006 Appl. Surf. Sci. 252 2297

    [15]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [16]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L 2007 Appl. Phys. Lett. 90 221504

    [17]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [18]

    Barrio R A, Varea C, Aragón J L, Maini P K 1999 Bull. Math. Biol. 61 483

    [19]

    Kytta K, Kaski K, Barrio R A 2007 Physica A 385 105

    [20]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382

    [21]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [22]

    Míguez D G, Dolnik M, Epstein I R, Muñuzuri A P 2011 Phys. Rev. E 84 046210

    [23]

    Rogers J L, Schatz M F, Brausch O, Pesch W 2000 Phys. Rev. Lett. 85 4281

    [24]

    Ni W M, Tang M X 2005 Trans. Amer. Math. Soc. 357 3953

    [25]

    Mikhailova A S, Showalter K 2006 Physics Reports 425 79

    [26]

    Yuan X J, Shao X, Liao H M, Ouyang Q 2009 Chin. Phys. Lett. 26 024702

    [27]

    Liu H Y, Yang C Y, Tang G N 2013 Acta Phys. Sin. 62 010505 (in Chinese) [刘海英, 杨翠云, 唐国宁 2013 物理学报 62 010505]

    [28]

    Wang W M, Liu H Y, Cai Y L, Li Z Q 2011 Chin. Phys. B 20 074702

    [29]

    Dong L F, Li S F, Liu F, Liu F C, Liu S H, Fan W L 2006 Acta Phys. Sin. 55 362 (in Chinese) [董丽芳, 李树锋, 刘峰, 刘富成, 刘书华, 范伟丽 2006 物理学报 55 362]

    [30]

    Dong L F, Yang Y J, Fan W L, Yue H, Wang S, Xiao H 2010 Acta Phys. Sin. 59 1917 (in Chinese) [董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红 2010 物理学报 59 1917]

  • [1]

    Schenk C P, Or-Guil M, Bode M, Purwins H G 1997 Phys. Rev. Lett. 78 3781

    [2]

    Berenstein I, Dolnik M, Yang L, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. E 70 046219

    [3]

    Arbell H, Fineberg J 2002 Phys. Rev. E 65 036224

    [4]

    Sharpe J P, Ramazza P L, Sungar N, Saunders K 2006 Phys. Rev. Lett. 96 094101

    [5]

    Bois J S, Jlicher F, Grill S W 2011 Phys. Rev. Lett. 106 028103

    [6]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303

    [7]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302

    [8]

    Turing A M 1952 Phil. Trans. R. Soc. London B 237 37

    [9]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206

    [10]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [11]

    Stollenwerk L, Laven J G, Purwins H G 2007 Phys. Rev. Lett. 98 255001

    [12]

    Shirafuji T, Kitagawa T, Wakai T, Tachibana K 2003 Appl. Phys. Lett. 83 2309

    [13]

    Shin J, Raja L L 2007 J. Phys. D: Appl. Phys. 40 3145

    [14]

    Liu C Z, Brown N, Meenan B J 2006 Appl. Surf. Sci. 252 2297

    [15]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [16]

    Nie Q Y, Ren C S, Wang D Z, Li S Z, Zhang J L 2007 Appl. Phys. Lett. 90 221504

    [17]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851

    [18]

    Barrio R A, Varea C, Aragón J L, Maini P K 1999 Bull. Math. Biol. 61 483

    [19]

    Kytta K, Kaski K, Barrio R A 2007 Physica A 385 105

    [20]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382

    [21]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [22]

    Míguez D G, Dolnik M, Epstein I R, Muñuzuri A P 2011 Phys. Rev. E 84 046210

    [23]

    Rogers J L, Schatz M F, Brausch O, Pesch W 2000 Phys. Rev. Lett. 85 4281

    [24]

    Ni W M, Tang M X 2005 Trans. Amer. Math. Soc. 357 3953

    [25]

    Mikhailova A S, Showalter K 2006 Physics Reports 425 79

    [26]

    Yuan X J, Shao X, Liao H M, Ouyang Q 2009 Chin. Phys. Lett. 26 024702

    [27]

    Liu H Y, Yang C Y, Tang G N 2013 Acta Phys. Sin. 62 010505 (in Chinese) [刘海英, 杨翠云, 唐国宁 2013 物理学报 62 010505]

    [28]

    Wang W M, Liu H Y, Cai Y L, Li Z Q 2011 Chin. Phys. B 20 074702

    [29]

    Dong L F, Li S F, Liu F, Liu F C, Liu S H, Fan W L 2006 Acta Phys. Sin. 55 362 (in Chinese) [董丽芳, 李树锋, 刘峰, 刘富成, 刘书华, 范伟丽 2006 物理学报 55 362]

    [30]

    Dong L F, Yang Y J, Fan W L, Yue H, Wang S, Xiao H 2010 Acta Phys. Sin. 59 1917 (in Chinese) [董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红 2010 物理学报 59 1917]

  • [1] 黄坤, 王腾飞, 姚激. 单层MoS2的热弹耦合非线性板模型. 物理学报, 2021, 70(13): 136201. doi: 10.7498/aps.70.20210160
    [2] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [3] 方杰, 韩冬梅, 刘辉, 刘昊迪, 郑泰玉. 非线性两模玻色子系统的Majorana表象. 物理学报, 2017, 66(16): 160302. doi: 10.7498/aps.66.160302
    [4] 李凡, 靳伍银, 马军. 非线性耦合对线性耦合同步的调制研究. 物理学报, 2012, 61(24): 240501. doi: 10.7498/aps.61.240501
    [5] 卞秋香, 姚洪兴. 非线性耦合多重边赋权复杂网络的同步. 物理学报, 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [6] 吕翎, 夏晓岚. 非线性耦合时空混沌系统的反同步研究. 物理学报, 2009, 58(2): 814-818. doi: 10.7498/aps.58.814
    [7] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步. 物理学报, 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [8] 秦 洁, 于洪洁. 超混沌R?ssler系统构成的星形网络的混沌同步. 物理学报, 2007, 56(12): 6828-6835. doi: 10.7498/aps.56.6828
    [9] 毕 磊, 包景东. 非线性耗散对亚稳态系统量子衰变速率的影响. 物理学报, 2007, 56(4): 1919-1923. doi: 10.7498/aps.56.1919
    [10] 王延申, 严学文. 非线性薛定谔模型边界场算子的形式因子. 物理学报, 2006, 55(8): 3885-3891. doi: 10.7498/aps.55.3885
    [11] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [12] 莫嘉琪, 林万涛. ENSO非线性模型的摄动解. 物理学报, 2004, 53(4): 996-998. doi: 10.7498/aps.53.996
    [13] 刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏 龙. 阳极氧化铝模板表面自组织条纹的形成. 物理学报, 2004, 53(2): 656-660. doi: 10.7498/aps.53.656
    [14] 朱善华, 崔维娜, 黄国翔. 具有二阶和三阶非线性一维光子晶体中的耦合模孤子. 物理学报, 2002, 51(4): 789-795. doi: 10.7498/aps.51.789
    [15] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [16] 王传奎, 高铁军, 薛成山. 耦合量子细胞的非线性特性. 物理学报, 2000, 49(10): 2033-2036. doi: 10.7498/aps.49.2033
    [17] 臧维平, 田建国, 张光寅. 非线性镜锁模理论. 物理学报, 1994, 43(5): 742-747. doi: 10.7498/aps.43.742
    [18] 吕振国, 周佐平, 邬起, 李庆行, 余振新. 基于新型非线性耦合腔锁模过程的时域理论分析. 物理学报, 1994, 43(2): 233-238. doi: 10.7498/aps.43.233
    [19] 黄光力. 非线性撕裂模的时间演化. 物理学报, 1987, 36(10): 1241-1246. doi: 10.7498/aps.36.1241
    [20] 郭世宠, 蔡诗东. 阈值附近撕裂模的非线性行为. 物理学报, 1984, 33(6): 861-866. doi: 10.7498/aps.33.861
计量
  • 文章访问数:  2706
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-02
  • 修回日期:  2013-08-13
  • 刊出日期:  2013-11-05

双层非线性耦合反应扩散系统中复杂Turing斑图

  • 1. 河北科技大学理学院, 石家庄 050018;
  • 2. 河北大学物理科学与技术学院, 保定 071002
    基金项目: 国家自然科学基金(批准号: 11247242)、国家自然科学基金青年科学基金(批准号: 51201057)和河北科技大学科研基金(批准号: QD201225, QD201226)资助的课题.

摘要: 采用双层耦合的Brusselator模型, 研究了两个子系统非线性耦合时Turing 模对斑图的影响, 发现两子系统Turing 模的波数比和耦合系数的大小对斑图的形成起着重要作用. 模拟结果表明: 斑图类型随波数比值的增加, 从简单斑图发展到复杂斑图; 非线性耦合项系数在0–0.1时, 系统1中短波模在系统2失稳模的影响下不仅可形成简单六边形、四边形和条纹斑图, 两模共振耦合还可以形成蜂窝六边形、超六边形和复杂的黑眼斑图等超点阵图形, 首次在一定范围内调整控制参量观察到由简单正四边形向超六边形斑图的转化过程; 耦合系数在0.1–1时, 系统1中短波模与系统2失稳模未发生共振耦合仅观察到与系统2相同形状的简单六边形、四边形和条纹斑图.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回