搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性两模玻色子系统的Majorana表象

方杰 韩冬梅 刘辉 刘昊迪 郑泰玉

引用本文:
Citation:

非线性两模玻色子系统的Majorana表象

方杰, 韩冬梅, 刘辉, 刘昊迪, 郑泰玉

Majorana representation for the nonlinear two-mode boson system

Fang Jie, Han Dong-Mei, Liu Hui, Liu Hao-Di, Zheng Tai-Yu
PDF
导出引用
  • 利用Majorana表象,从平均场模型和二次量子化模型两方面研究了非线性双模玻色子系统的动力学问题.得到了Majorana点在球面上的运动方程,分析了平均场模型和二次量子化模型之间的区别及其在Majorana点运动方程中的体现.研究了二次量子化模型中量子态在少体和多体情况下的动力学演化及其与平均场量子态的区别和联系.以平均场模型和二次量子化模型量子态之间的保真度和Majorana点之间的关联为手段,讨论了在不同玻色子间相互作用强度、不同玻色子数下量子态的演化及相应的自囚禁效应.
    By presenting the quantum evolution with the trajectories of points on the Bloch sphere, the Majorana representation provides an intuitive way to study a high dimensional quantum evolution. In this work, we study the dynamical evolution of the nonlinear two-mode boson system both in the mean-field model by one point on the Bloch sphere and the second-quantized model by the Majorana points, respectively. It is shown that the evolution of the state in the mean-field model and the self-trapping effect can be perfectly characterized by the motion of the point, while the quantum evolution in the second-quantized model can be expressed by an elegant formula of the Majorana points. We find that the motions of states in the two models are the same in linear case. In the nonlinear case, the contribution of the boson interactions to the formula of Majorana points in the second quantized model can be decomposed into two parts:one is the single point part which equals to the nonlinear part of the equation in mean-field model under lager boson number limit; the other one is related to the correlations between the Majorana points which cannot be found in the equation of the point in mean-field model. This means that, the quantum fluctuation which is neglected in the mean-field model can be represented by these correlations. To illustrate our results and shed more light on these two different models, we discussed the quantum state evolution and corresponding self-trapping phenomenon with different boson numbers and boson interacting strength by using the fidelity between the states of the two models and the correlation between the Majoranapoints and the single points in the mean-field model. The result show that the dynamics evolution of the two models are quite different with small boson numbers, since the correlation between the Majorana stars cannot be neglected. However, the second-quantized evolution and the mean-field evolution still vary in both the fidelity population difference between the two boson modes and the fidelity of the states in the two models. The difference between the continuous changes of the second quantized evolution with the boson interacting strength and the critical behavior of the mean-field evolution which related to the self-trapping effect is also discussed. These results can help us to investigate how to include the quantum fluctuation into the mean-field model and find a method beyond the mean field approach.
      Corresponding author: Liu Hao-Di, liuhd100@nenu.edu.cn;zhengty@nenu.edu.cn ; Zheng Tai-Yu, liuhd100@nenu.edu.cn;zhengty@nenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11405008,11175044) and the Plan for Scientific and Technological Development of Jilin Province,China (Grant No.20160520173JH).
    [1]

    Bloch F, Rabi I I 1945 Rev. Mod. Phys. 17 237

    [2]

    Majorana E 1932 Nuovo Cim. 9 43

    [3]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [4]

    Zhu Q, Wu B 2015 Chin. Phys. B 24 050507

    [5]

    Lian B, Ho T L, Zhai H 2012 Phys. Rev. A 85 051606

    [6]

    Cui X, Lian B, Ho T L, Lev B L, Zhai H 2013 Phys. Rev. A 88 011601

    [7]

    Devi A R U, Sudha, Rajagopal A K 2012 Quantum Inf. Process. 11 685

    [8]

    Bruno P 2012 Phys. Rev. Lett. 108 240402

    [9]

    Liu H D, Fu L B 2014 Phys. Rev. Lett. 113 240403

    [10]

    Liu H D, Fu L B 2016 Phys. Rev. A 94 022123

    [11]

    Tamate S, Ogawa K, Kitano M 2011 Phys. Rev. A 84 052114

    [12]

    Aulbach M, Markham D, Murao M 2010 New J. Phys. 12 073025

    [13]

    Martin J, Giraud O, Braun P A, Braun D, Bastin T 2010 Phys. Rev. A 81 062347

    [14]

    Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L, Solano E 2009 Phys. Rev. Lett. 103 070503

    [15]

    Ribeiro P, Mosseri R 2011 Phys. Rev. Lett. 106 180502

    [16]

    Ganczarek W, Kuś M,Życzkowski K 2012 Phys. Rev. A 85 032314

    [17]

    Wang Z, Markham D 2012 Phys. Rev. Lett. 108 210407

    [18]

    Wang Z, Markham D 2013 Phys. Rev. A 87 12104

    [19]

    Cao H 2013 Acta Phys. Sin. 62 030303 (in Chinese)[曹辉2013物理学报62 030303]

    [20]

    Barnett R, Podolsky D, Refael G 2009 Phys. Rev. B 80 024420

    [21]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253

    [22]

    Yang C, Guo H, Fu L B, Chen S 2015 Phys. Rev. B 91 125132

    [23]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [24]

    Micheli A, Jaksch D, Cirac J I, Zoller P 2003 Phys. Rev. A 67 013607

    [25]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [26]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [27]

    Wu B, Niu Q, New J 2012 Physics 5 104

    [28]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [29]

    Chen Z D, Liang J Q, Shen S Q, Xie W F 2004 Phys. Rev. A 69 23611

    [30]

    Tonel A P, Links J, Foerster A 2005 J. Phys. A 38 1235

    [31]

    Fu L, Liu J 2006 Phys. Rev. A 74 063614

    [32]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese)[马云, 傅立斌, 杨志安, 刘杰2006物理学报55 5623]

    [33]

    Gong J B, Morales-Molina L, Hänggi P 2009 Phys. Rev. Lett. 103 133002

    [34]

    Pang M M, Hao Y 2016 Chin. Phys. B 25 40501

    [35]

    Wang G F, Fu L B, Liu L 2006 Phys. Rev. A 73 13619

    [36]

    Cirac J I, Lewenstein M, Mo K, Zoller P 1998 Phys. Rev. A 57 1208

    [37]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [38]

    Li S C, Duan W S 2009 Acta Phys. Sin. 58 4396 (in Chinese)[栗生长, 段文山2009物理学报58 4396]

  • [1]

    Bloch F, Rabi I I 1945 Rev. Mod. Phys. 17 237

    [2]

    Majorana E 1932 Nuovo Cim. 9 43

    [3]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191

    [4]

    Zhu Q, Wu B 2015 Chin. Phys. B 24 050507

    [5]

    Lian B, Ho T L, Zhai H 2012 Phys. Rev. A 85 051606

    [6]

    Cui X, Lian B, Ho T L, Lev B L, Zhai H 2013 Phys. Rev. A 88 011601

    [7]

    Devi A R U, Sudha, Rajagopal A K 2012 Quantum Inf. Process. 11 685

    [8]

    Bruno P 2012 Phys. Rev. Lett. 108 240402

    [9]

    Liu H D, Fu L B 2014 Phys. Rev. Lett. 113 240403

    [10]

    Liu H D, Fu L B 2016 Phys. Rev. A 94 022123

    [11]

    Tamate S, Ogawa K, Kitano M 2011 Phys. Rev. A 84 052114

    [12]

    Aulbach M, Markham D, Murao M 2010 New J. Phys. 12 073025

    [13]

    Martin J, Giraud O, Braun P A, Braun D, Bastin T 2010 Phys. Rev. A 81 062347

    [14]

    Bastin T, Krins S, Mathonet P, Godefroid M, Lamata L, Solano E 2009 Phys. Rev. Lett. 103 070503

    [15]

    Ribeiro P, Mosseri R 2011 Phys. Rev. Lett. 106 180502

    [16]

    Ganczarek W, Kuś M,Życzkowski K 2012 Phys. Rev. A 85 032314

    [17]

    Wang Z, Markham D 2012 Phys. Rev. Lett. 108 210407

    [18]

    Wang Z, Markham D 2013 Phys. Rev. A 87 12104

    [19]

    Cao H 2013 Acta Phys. Sin. 62 030303 (in Chinese)[曹辉2013物理学报62 030303]

    [20]

    Barnett R, Podolsky D, Refael G 2009 Phys. Rev. B 80 024420

    [21]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253

    [22]

    Yang C, Guo H, Fu L B, Chen S 2015 Phys. Rev. B 91 125132

    [23]

    Milburn G J, Corney J, Wright E M, Walls D F 1997 Phys. Rev. A 55 4318

    [24]

    Micheli A, Jaksch D, Cirac J I, Zoller P 2003 Phys. Rev. A 67 013607

    [25]

    Wu B, Niu Q 2000 Phys. Rev. A 61 023402

    [26]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [27]

    Wu B, Niu Q, New J 2012 Physics 5 104

    [28]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [29]

    Chen Z D, Liang J Q, Shen S Q, Xie W F 2004 Phys. Rev. A 69 23611

    [30]

    Tonel A P, Links J, Foerster A 2005 J. Phys. A 38 1235

    [31]

    Fu L, Liu J 2006 Phys. Rev. A 74 063614

    [32]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese)[马云, 傅立斌, 杨志安, 刘杰2006物理学报55 5623]

    [33]

    Gong J B, Morales-Molina L, Hänggi P 2009 Phys. Rev. Lett. 103 133002

    [34]

    Pang M M, Hao Y 2016 Chin. Phys. B 25 40501

    [35]

    Wang G F, Fu L B, Liu L 2006 Phys. Rev. A 73 13619

    [36]

    Cirac J I, Lewenstein M, Mo K, Zoller P 1998 Phys. Rev. A 57 1208

    [37]

    Leggett A J 2001 Rev. Mod. Phys. 73 307

    [38]

    Li S C, Duan W S 2009 Acta Phys. Sin. 58 4396 (in Chinese)[栗生长, 段文山2009物理学报58 4396]

  • [1] 马闯, 杨晓龙, 陈含爽, 张海峰. 基于平均场近似的BP算法求解随机块模型. 物理学报, 2021, 70(22): 228901. doi: 10.7498/aps.70.20210511
    [2] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [3] 李方家, 刘军, 李儒新. 基于自衍射效应的自参考光谱干涉方法的研究. 物理学报, 2013, 62(6): 064211. doi: 10.7498/aps.62.064211
    [4] 邢耀亮, 杨志安. 半导体光折变介质中光束传输的自囚禁及周期调制. 物理学报, 2013, 62(13): 130302. doi: 10.7498/aps.62.130302
    [5] 曹辉. Majorana表象下的纠缠动力学. 物理学报, 2013, 62(3): 030303. doi: 10.7498/aps.62.030303
    [6] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [7] 张 淼, 贾焕玉. 非Lamb-Dicke近似下制备囚禁冷离子的振动相干态. 物理学报, 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [8] 邹少存, 徐 伟, 靳艳飞. 具有时滞状态反馈的随机Van der Pol系统的动力学研究. 物理学报, 2008, 57(12): 7527-7534. doi: 10.7498/aps.57.7527
    [9] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [10] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性. 物理学报, 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [11] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, 2005, 54(3): 1156-1161. doi: 10.7498/aps.54.1156
    [12] 方细明, 冯芒, 施磊, 高克林, 朱熙文. 在相干态表象中精确求解无旋波近似的Jaynes-Cummings模型. 物理学报, 1997, 46(11): 2160-2165. doi: 10.7498/aps.46.2160
    [13] 冯健, 高学彦. 强场自电离光电子谱中峰开关效应的破坏. 物理学报, 1993, 42(6): 886-892. doi: 10.7498/aps.42.886
    [14] 施建青, 李国强, 高琴. 核子平均自由程温度效应的自洽半经典研究. 物理学报, 1990, 39(1): 24-29. doi: 10.7498/aps.39.24
    [15] 李正中, 周青春, 邱扬. 重费密子合金的Slave Boson平均场理论. 物理学报, 1989, 38(12): 2019-2028. doi: 10.7498/aps.38.2019
    [16] 姚关华, 徐至展. 强激光场诱导自电离中的相干效应. 物理学报, 1988, 37(11): 1760-1766. doi: 10.7498/aps.37.1760
    [17] 王顺金. 多体关联动力学中的自洽平均场. 物理学报, 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
    [18] 苏肇冰, 于渌, 周光召. 原子核费密多体系统平均场近似的推广. 物理学报, 1984, 33(7): 999-1007. doi: 10.7498/aps.33.999
    [19] 蒲富恪, 王鼎盛. 非均匀铁磁体自发磁化的平均场理论. 物理学报, 1978, 27(4): 439-447. doi: 10.7498/aps.27.439
    [20] 杨约翰. 自中子共振吸收导出原子核能准之平均间隔. 物理学报, 1947, 7(1): 1-8. doi: 10.7498/aps.7.1
计量
  • 文章访问数:  5911
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-06-03
  • 刊出日期:  2017-08-05

/

返回文章
返回