-
目前国内外关于SI模型空间格局的研究大多数局限在自扩散以及系统参数对斑图模式的影响, 而关于交叉扩散对空间格局的演化机理研究成果较少. 本文建立了一个具有自扩散和交叉扩散的空间流行病模型, 研究了在有无自扩散驱动系统不稳定的情况下, 交叉扩散对SI模型的稳定性、稳定速度以及斑图结构的影响. 研究发现, 在无自扩散驱动系统不稳定的情况下, 引入交叉扩散能够激发Turing斑图的产生; 在自扩散驱动系统不稳定的情况下, 交叉扩散可以实现斑图结构的改变; 对于SI 模型的稳定速度, 不论有无自扩散驱动系统不稳定, 交叉扩散都影响了其到达稳定所需时间, 且在不同的交叉扩散系数下, 所需时间也不同. 因此, 交叉扩散对于SI模型的稳定性、稳定速度、斑图结构都有重要的影响.Currently, most of researches on the spatial patterns of the SI model focus on the influences of self-diffusion and system parameters on pattern formation, but only a few studies involve how cross-diffusion influences the evolution of spatial patterns. In this paper, we establish a spatial epidemic model that considers both self-diffusion and cross-diffusion and investigate the effects of cross-diffusion on the stability, the rate of stability, and the pattern structure of the SI model with or without self-diffusion-driven system instability. The stability of the non-diffusive system is analyzed, and the conditions for Turing instability in the presence of diffusion terms are elucidated. It is found that when the system is stable under self-diffusion-driven conditions, the introduction of cross-diffusion can change the system's local stability, and produce Turing patterns as well. Furthermore, different cross-diffusion coefficients can generate patterns with different structures. When the system is unstable under self-diffusion-driven conditions, the introduction of cross-diffusion can change the pattern structure. Specifically, when the cross-diffusion coefficient
$D_1$ for the susceptible individuals is negative, the pattern structure is transformed from spot-stripe patterns into spot patterns, and when it is positive, the pattern structureturns from spot-stripe patterns into labyrinthine patterns, and eventually into a uniform solid color distribution. When the cross-diffusion coefficient$D_2$ for the infected individuals is positive, the pattern transformation is similar to when the cross-diffusion coefficient$D_1$ for susceptible individuals is negative, the pattern graduallychanges into spot patterns. When$D_2$ is negative, the pattern structure exhibits a porous structure, eventually it is transformed into a uniform solid color distribution. Regarding the rate of stability of the SI model, in the case of a stable self-diffusion system, the introduction of cross-diffusion may change the rate of system stability, and the larger the cross-diffusion coefficient$D_1$ for the susceptible individuals, the faster the system stabilizes. When the self-diffusion-driven system is unstable, the cross-diffusion causes the system to change from an unstable state into a locally stable state, and the smaller the susceptible individuals' cross-diffusion coefficient, the slower the rate of system stabilization is. Therefore, cross-diffusion has a significantinfluence on the stability, the rate of stability, and the pattern structure of the SI model.-
Keywords:
- Turing instability /
- nonlinear incidence rate /
- cross diffusion /
- Turing pattern
[1] Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 2 37Google Scholar
[2] Capone F, Carfora M F, De Luca R, Torcicollo I 2019 Math. Comput. Simul. 165 172Google Scholar
[3] Ali I, Saleem M T 2023 Mathematics 11 1459Google Scholar
[4] Hu J, Zhu L, Peng M 2022 Inf. Sci. 596 501Google Scholar
[5] Ruiz-Baier R, Tian C 2013 Nonlinear Anal. Real World Appl. 14 601Google Scholar
[6] Sun G Q, Jin Z, Liu Q X, Li L 2007 J. Stat. Mech. Theory Exp. 2007 P11011Google Scholar
[7] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar
Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar
[8] 张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar
Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar
[9] Giri A, Pramod Jain S, Kar S 2020 Chemphyschem 21 1608Google Scholar
[10] 王楠, 肖敏, 蒋海军, 黄霞 2022 物理学报 71 180201Google Scholar
Wang N, Xiao M, Jiang H J, Huang X 2022 Acta Phys. Sin. 71 180201Google Scholar
[11] 王凌志, 周先春, 陈铭 2019 信息与控制 48 559Google Scholar
Wang L Z, Zhou X C, Chen M 2019 Inf. Control. 48 559Google Scholar
[12] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar
[13] Wang W, Cai Y, Wu M 2012 Nonlinear Anal. Real. World Appl. 13 2240Google Scholar
[14] 阮中远 2020 中国科学: 物理学 力学 天文学 50 010507Google Scholar
Ruan Z Y 2020 Sci. Sin-Phys. Mech. Astron. 50 010507Google Scholar
[15] Wang L, Li X 2014 Chin. Sci. Bull. 59 3511Google Scholar
[16] Sun G Q, Jusup M, Jin Z, Wang Y, Wang Z 2016 Phys. Life Rev. 19 43Google Scholar
[17] Guin L N, Acharya S 2017 Nonlinear Dyn. 88 1501Google Scholar
[18] Zhao L, Wang Z C, Ruan S 2020 Nonlinear Anal. Real World Appl. 51 102966Google Scholar
[19] Zheng Q, Pandey V, Shen J, Xu Y, Guan L 2022 EPL 137 42002Google Scholar
[20] Kuniya T, Wang J 2018 Nonlinear Anal. Real World Appl. 43 262Google Scholar
[21] Ahmed N, Fatima M, Baleanu D, Nisar K S, Khan I, Rafiq M, Rehman M A U, Ahmad M O 2020 Front. Phys. 7 220Google Scholar
[22] Wang W, Gao X, Cai Y, Shi H, Fu S 2018 J. Franklin Inst. 355 7226Google Scholar
[23] Sun G Q 2012 Nonlinear Dyn. 69 1097Google Scholar
[24] Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar
[25] Fan Y 2014 Appl. Math. Comput. 228 311Google Scholar
[26] Ghorai S, Poria S 2016 Chaos Solitons Fractals 91 421Google Scholar
[27] Aly S, Khenous H B, Hussien F 2015 Int. J. Biomath. 8 1550006Google Scholar
[28] Triska A, Gunawan A Y, Nuraini N 2022 J. Math. Computer Sci. 27 1Google Scholar
[29] Brauer F, Driessche P V D 2001 Math. Biosci. 171 143Google Scholar
[30] Chinviriyasit S, Chinviriyasit W 2010 Appl. Math. Comput. 216 395Google Scholar
[31] Simon C P, Jacquez J A 1992 SIAM J. Appl. Math. 52 541Google Scholar
[32] Hethcote H W, van den Driessche P 1991 J. Math. Biol. 29 271Google Scholar
-
图 4 不同取值的交叉扩散系数$D_1$的色散关系曲线及空间格局 (a)色散关系曲线; (b)$D_1$= 0; (c)$D_1=-0.2$; (d) $D_1=-1$; (e)$D_1=1$; (f)$D_1=3.5$
Fig. 4. Dispersion relationship curves and spatial patterns of cross diffusion coefficients $D_1$ with different values: (a) Dispersion relationship curve; (b)$D_1=0$; (c)$D_1=-0.2$; (d)$D_1=-1$; (e)$D_1=1$; (f)$D_1=3.5$
图 5 不同取值的交叉扩散系数$D_2$的色散关系曲线及空间格局 (a)色散关系曲线; (b)$D_2=0$; (c)$D_2=0.5$; (d)$D_2=1$;(e)$D_2=-1$; (f)$D_2=-2$
Fig. 5. Dispersion relationship curves and spatial patterns of cross diffusion coefficients $D_2$ with different values: (a) Dispersion relationship curve; (b)$D_2=0$; (c)$D_2=0.5$; (d)$D_2=1$; (e)$D_1=-1$; (f)$D_1=-2$
-
[1] Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 2 37Google Scholar
[2] Capone F, Carfora M F, De Luca R, Torcicollo I 2019 Math. Comput. Simul. 165 172Google Scholar
[3] Ali I, Saleem M T 2023 Mathematics 11 1459Google Scholar
[4] Hu J, Zhu L, Peng M 2022 Inf. Sci. 596 501Google Scholar
[5] Ruiz-Baier R, Tian C 2013 Nonlinear Anal. Real World Appl. 14 601Google Scholar
[6] Sun G Q, Jin Z, Liu Q X, Li L 2007 J. Stat. Mech. Theory Exp. 2007 P11011Google Scholar
[7] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar
Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar
[8] 张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar
Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar
[9] Giri A, Pramod Jain S, Kar S 2020 Chemphyschem 21 1608Google Scholar
[10] 王楠, 肖敏, 蒋海军, 黄霞 2022 物理学报 71 180201Google Scholar
Wang N, Xiao M, Jiang H J, Huang X 2022 Acta Phys. Sin. 71 180201Google Scholar
[11] 王凌志, 周先春, 陈铭 2019 信息与控制 48 559Google Scholar
Wang L Z, Zhou X C, Chen M 2019 Inf. Control. 48 559Google Scholar
[12] Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar
[13] Wang W, Cai Y, Wu M 2012 Nonlinear Anal. Real. World Appl. 13 2240Google Scholar
[14] 阮中远 2020 中国科学: 物理学 力学 天文学 50 010507Google Scholar
Ruan Z Y 2020 Sci. Sin-Phys. Mech. Astron. 50 010507Google Scholar
[15] Wang L, Li X 2014 Chin. Sci. Bull. 59 3511Google Scholar
[16] Sun G Q, Jusup M, Jin Z, Wang Y, Wang Z 2016 Phys. Life Rev. 19 43Google Scholar
[17] Guin L N, Acharya S 2017 Nonlinear Dyn. 88 1501Google Scholar
[18] Zhao L, Wang Z C, Ruan S 2020 Nonlinear Anal. Real World Appl. 51 102966Google Scholar
[19] Zheng Q, Pandey V, Shen J, Xu Y, Guan L 2022 EPL 137 42002Google Scholar
[20] Kuniya T, Wang J 2018 Nonlinear Anal. Real World Appl. 43 262Google Scholar
[21] Ahmed N, Fatima M, Baleanu D, Nisar K S, Khan I, Rafiq M, Rehman M A U, Ahmad M O 2020 Front. Phys. 7 220Google Scholar
[22] Wang W, Gao X, Cai Y, Shi H, Fu S 2018 J. Franklin Inst. 355 7226Google Scholar
[23] Sun G Q 2012 Nonlinear Dyn. 69 1097Google Scholar
[24] Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar
[25] Fan Y 2014 Appl. Math. Comput. 228 311Google Scholar
[26] Ghorai S, Poria S 2016 Chaos Solitons Fractals 91 421Google Scholar
[27] Aly S, Khenous H B, Hussien F 2015 Int. J. Biomath. 8 1550006Google Scholar
[28] Triska A, Gunawan A Y, Nuraini N 2022 J. Math. Computer Sci. 27 1Google Scholar
[29] Brauer F, Driessche P V D 2001 Math. Biosci. 171 143Google Scholar
[30] Chinviriyasit S, Chinviriyasit W 2010 Appl. Math. Comput. 216 395Google Scholar
[31] Simon C P, Jacquez J A 1992 SIAM J. Appl. Math. 52 541Google Scholar
[32] Hethcote H W, van den Driessche P 1991 J. Math. Biol. 29 271Google Scholar
计量
- 文章访问数: 2392
- PDF下载量: 51
- 被引次数: 0