搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法

姚美灵 廖纪星 逯好峰 黄强 崔艳峰 李翔 杨雪莹 白杨

引用本文:
Citation:

影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法

姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨

Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells

Yao Mei-Ling, Liao Ji-Xing, Lu Hao-Feng, Huang Qiang, Cui Yan-Feng, Li Xiang, Yang Xue-Ying, Bai Yang
PDF
HTML
导出引用
  • 高效且稳定的钙钛矿/异质结叠层太阳能电池是学术界与工业界共同探索的方向, 目前小面积叠层太阳能电池效率优势已然非常明显, 但在商业化推进过程中, 叠层路线在电池结构设计与界面调控、钙钛矿材料选型与优化、器件尺寸放大以及稳定性等方面仍存在许多挑战. 本文通过收集相关文献资料, 包括实验数据和理论模拟结果, 对钙钛矿/异质结叠层太阳能电池的研究现状进行分析, 认为未来的研究方向可能涉及叠层顶电池的界面调控及组件互联结构设计等关键问题. 因此, 文章重点阐述钙钛矿/异质结叠层太阳能电池各关键材料层的优化选型、钙钛矿带隙优化与离子迁移抑制、层间界面传输调控、底电池连接层优化及组件互联与封装方式优化. 基于现有研究成果对叠层太阳能电池技术进行了总结和探索展望, 旨在为后续叠层太阳能电池结构设计的各关键问题提供方向性解决建议.
    Efficient and stable perovskite/heterojunction tandem solar cells (PTSC) are a direction of joint exploration in both academia and industry. Achieving efficient solar energy utilization by assembling structural layers with different bandgaps in an optical sequence is the original design strategy for PTSC. Through the reasonable distribution of the absorption spectra of each layer, the photoelectric conversion efficiency (PCE) of PTSC can theoretically be increased to more than 40%. At present, the efficiency advantage of small-area PTSC is well-established, but there are still many challenges in the commercialization of solar cell efficiency and stability. Therefore, in this work, the two-terminal (2T) and four-terminal (4T) stacking methods are regarded as the main structural routes, and the optimal design of the key structural layers of PTSC, bandgap adjustment, additive regulation, optimization of interlayer transport, and optimization of the module interconnection and encapsulation methods are focused on. Based on the existing research results, the key problems and solutions affecting the efficiency and stability of PTSC are summarized and outlooked, aiming to provide directional solutions to the key problems in the structural design of PTSC. In addition, from the application perspective, it is proposed that before the stability problem of the perovskite is fundamentally solved, the 4T PTSC is more likely to achieve product iteration and industrial efficiency improvement, with the expectation of taking the lead in commercialization. This work emphasizes the popularization and practical application of commercialization, with a perspective that is more in line with the market trend and close to the industrial demand, and is expected to provide an important reference for the commercialization of PTSC in the academic circles.
      通信作者: 逯好峰, luhf@cando-solar.com ; 白杨, y.bai@siat.ac.cn
      Corresponding author: Lu Hao-Feng, luhf@cando-solar.com ; Bai Yang, y.bai@siat.ac.cn
    [1]

    Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789Google Scholar

    [2]

    Yu J, Li J, Zhao Y, Lambertz A, Chen T, Duan W, Liu W, Yang X, Huang Y, Ding K 2021 Sol. Energy Mater. Sol. Cells 224 110993Google Scholar

    [3]

    Niewelt T, Steinhauser B, Richter A, Veith-Wolf B, Fell A, Hammann B, Grant N E, Black L, Tan J, Youssef A, Murphy J D, Schmidt J, Schubert M C, Glunz S W 2022 Sol. Energy Mater. Sol. Cells 235 111467Google Scholar

    [4]

    Yu W, Li F, Huang T, Li W, Wu T 2023 The Innovation 4 100363Google Scholar

    [5]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [6]

    Liang T S, Pravettoni M, Deline C, Stein J S, Kopecek R, Singh J P, Luo W, Wang Y, Aberle A G, Khoo Y S 2019 Energy Environ. Sci. 12 427Google Scholar

    [7]

    Haschke J, Seif J P, Riesen Y, Tomasi A, Cattin J, Tous L, Choulat P, Aleman M, Cornagliotti E, Uruena A, Russell R, Duerinckx F, Champliaud J, Levrat J, Abdallah A A, Aïssa B, Tabet N, Wyrsch N, Despeisse M, Szlufcik J, De Wolf S, Ballif C 2017 Energy Environ. Sci. 10 1196Google Scholar

    [8]

    Boccard M, Ballif C 2020 ACS Energy Lett. 5 1077Google Scholar

    [9]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar

    [10]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [11]

    Lin X, Cui D, Luo X, Zhang C, Han Q, Wang Y, Han L 2020 Energy Environ. Sci. 13 3823Google Scholar

    [12]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [13]

    Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar

    [14]

    Ugur E, Aydin E, Bastiani M D, Harrison G T, Yildirim B K, Teale S, Chen B, Liu J, Wang M, Seitkhan A, Babics M, Subbiah A S, Said A A, Azmi R, Rehman A u, Allen T G, Schulz P, Sargent E H, Laquai F, Wolf S D 2023 Matter 6 2919Google Scholar

    [15]

    Sadegh F, Akin S, Moghadam M, Keshavarzi R, Mirkhani V, Ruiz‐Preciado M A, Akman E, Zhang H, Amini M, Tangestaninejad S, Mohammadpoor‐Baltork I, Graetzel M, Hagfeldt A, Tress W 2021 Adv. Funct. Mater. 31 2102237Google Scholar

    [16]

    Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater. 12 2200015Google Scholar

    [17]

    Duan L, Walter D, Chang N, Bullock J, Kang D, Phang S P, Weber K, White T, Macdonald D, Catchpole K, Shen H 2023 Nat. Rev. Mater. 8 261Google Scholar

    [18]

    Chin X Y , Turkay D , Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M. , Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar

    [19]

    Kim S, Trinh T T, Park J, Pham D P, Lee S, Do H B, Dang N N, Dao V A, Kim J, Yi J 2021 Sci. Rep. 11 15524Google Scholar

    [20]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [21]

    Hou F, Yan L, Shi B, Chen J, Zhu S, Ren Q, An S, Zhou Z, Ren H, Wei C, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Zhang D, Zhao Y, Zhang X 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [22]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [23]

    Xu K, Al-Ashouri A, Peng Z W, Köhnen E, Hempel H, Akhundova F, Marquez J A, Tockhorn P, Shargaieva O, Ruske F, Zhang J, Dagar J, Stannowski B, Unold T, Abou-Ras D, Unger E, Korte L, Albrecht S 2022 ACS Energy Lett. 7 3600Google Scholar

    [24]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C, Huang J 2020 Joule 4 850Google Scholar

    [25]

    Xiao K, Lin Y H, Zhang M, Oliver R D J, Wang X, Liu Z , Luo X, Li J, Lai D, Luo H W, Lin R X, Xu J, Hou Y, Snaith H J, Tan H 2022 Science 376 762Google Scholar

    [26]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [27]

    Saki Z, Byranvand M M, Taghavinia N, Kedia M, Saliba M 2021 Energy Environ. Sci. 14 5690Google Scholar

    [28]

    Li H, Zhou J, Tan L, Li M, Jiang C, Wang S, Zhao X, Liu Y, Zhang Y, Ye Y, Tress W, Yi C 2022 Sci. Adv. 8 eabo7422Google Scholar

    [29]

    Nguyen V S, Zimmermann I, Grépin E, Medjoubi K, Jutteau S, Donsanti F, Bruhat E, Duchatelet A, Berson S, Rousset J 2023 Mater. Sci. Semicond. Process. 158 107358Google Scholar

    [30]

    De Bastiani M, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, Isikgor F H, Liu J, Xu L, Chen B, Van Kerschaver E, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar

    [31]

    Farooq U, Ishaq M, Shah U A, Chen S, Zheng Z H, Azam M, Su Z H, Tang R, Fan P, Bai Y, Liang G X 2022 Nano Energy 92 106710Google Scholar

    [32]

    Chen Z, Brocks G, Tao S, Bobbert P A 2021 Nat. Commun. 12 2687Google Scholar

    [33]

    Draguta S, Sharia O, Yoon S J, Brennan M C, Morozov Y V, Manser J S, Kamat P V, Schneider W F, Kuno M 2017 Nat. Commun. 8 200Google Scholar

    [34]

    Liu X, Luo D, Lu Z H, Yun J S, Saliba M, Seok S I, Zhang W 2023 Nat. Rev. Chem. 7 462Google Scholar

    [35]

    Subbiah A S, Isikgor F H, Howells C T, De Bastiani M, Liu J, Aydin E, Furlan F, Allen T G, Xu F, Zhumagali S, Hoogland S, Sargent E H, McCulloch I, De Wolf S 2020 ACS Energy Lett. 5 3034Google Scholar

    [36]

    Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar

    [37]

    Wei Q, Zhang Q, Xiang L, Zhang S, Liu J, Yang X, Ke Y, Ning Z 2021 J. Phys. Chem. Lett. 12 6492Google Scholar

    [38]

    Yang G, Ni Z, Yu Z J, Larson B W, Yu Z, Chen B, Alasfour A, Xiao X, Luther J M, Holman Z C, Huang J 2022 Nat. Photonics 16 588Google Scholar

    [39]

    Sun C, Wei J, Zhao J, Jiang Y, Wang Y, Hu H, Wang X, Zhang Y, Yuan M 2021 Nanophotonics 10 2157Google Scholar

    [40]

    Zhang F, Tu B B, Yang S F, Fan K, Liu Z L, Xiong Z J, Zhang J, Li W, Huang H T, Yu C, Jen A K Y, Yao K 2023 Adv. Mater. 35 2303139Google Scholar

    [41]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [42]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar

    [43]

    Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Science 365 687Google Scholar

    [44]

    Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar

    [45]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279Google Scholar

    [46]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L, Yan C 2019 Science 363 265Google Scholar

    [47]

    Zhang Y, Song Q Z, Liu G L, Chen Y H, Guo Z Y, Li N X, Niu X X, Qiu Z W, Zhou W T, Huang Z J, Zhu C, Zai H C, Ma S, Bai Y, Chen Q, Huang W C, Zhao Q, Zhou H P 2023 Nat. Photonics 17 1066Google Scholar

    [48]

    Elshorbagy M H, López-Fraguas E, Chaudhry F A, Sánchez-Pena J M, Vergaz R, García-Cámara B 2020 Sci. Rep. 10 2271Google Scholar

    [49]

    Khampa W, Bhoomanee C, Musikpan W, Passatorntaschakorn W, Rodwihok C, Kim H S, Gardchareon A, Ruankham P, Wongratanaphisan D 2023 Appl. Surf. Sci. 637 157933Google Scholar

    [50]

    Aydin E, De Bastiani M, De Wolf S 2019 Adv. Mater. 31 1900428Google Scholar

    [51]

    Liu Z, Li H J, Chu Z J, Xia R, Wen J, Mo Y, Zhu H S, Luo H W, Zheng X T, Huang Z L, Luo X, Wang B, Zhang X L, Yang G T, Feng Z Q, Chen Y F, Kong W C, Gao J F, Tan H R 2024 Adv. Mater. 36 2308370Google Scholar

    [52]

    Mariotti S, Köhnen K, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine L, Mantione D, Al-Ashouri A, Härtel M S, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S 2023 Science 381 63Google Scholar

    [53]

    Liu J, Bastiani M D, Aydin E, Harrison G T, Gao Y, Pradhan R R, Eswaran M K, Mandal M, Yan W, Seitkhan A, Babics M, Subbiah A S, Ugur E, Xu F, Xu L, Wang M, Rehman A, Razzaq A, Kang J, Azmi R, Said A A, Isikgor F H, Allen T G, Andrienko D, Schwingenschlögl U, Laquai F, De Wolf S 2022 Science 377 302Google Scholar

    [54]

    Zheng J, Wang G, Duan W, Mahmud M A, Yi H, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar

    [55]

    Dagar J, Fenske M, Al-Ashouri A, Schultz C, Li B, Köbler H, Munir R, Parmasivam G, Li J, Levine I, Merdasa A, Kegelmann L, Näsström H, Marquez J A, Unold T, Többens D M, Schlatmann R, Stegemann B, Abate A, Albrecht S, Unger E 2021 ACS Appl. Mater. Interfaces 13 13022Google Scholar

    [56]

    Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez J A, Vilches A B M, Kasparavicius E, Smith J A, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar

    [57]

    Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, Wu J, Liu C, Wan Z, Jia C, Li N, Hauch J, Brabec C J 2021 Nat. Energy 7 144Google Scholar

    [58]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar

    [59]

    Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z, Zhu Z 2023 Science 382 284Google Scholar

    [60]

    Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen Z G, Du Y, Wang L, Huang J 2019 ACS Energy Lett. 4 1231Google Scholar

    [61]

    Chang Q, Bao D, Chen B, Hu H, Chen X, Sun H, Lam Y M, Zhu J X, Zhao D, Chia E E M 2022 Commun. Phys. 5 187Google Scholar

    [62]

    Peng W, Mao K, Cai F, Meng H, Zhu Z, Li T, Yuan S, Xu Z, Feng X, Xu J, Michael D. McGehee, Xu J 2023 Science 379 683Google Scholar

    [63]

    Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [64]

    Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H 2020 Science 367 1135Google Scholar

    [65]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q, Han Q, Zhang Y, Han L 2022 Sci. Chin. Chem. 65 1321Google Scholar

    [66]

    Ji X, Bi L, Fu Q, Li B, Wang J, Jeong S Y, Feng K, Ma S, Liao Q, Lin F R, Woo H Y, Lu L, Jen A K Y, Guo X 2023 Adv. Mater. 35 2303665Google Scholar

    [67]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A u, Van Kerschaver E, Baran D, McCulloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, De Wolf S 2021 Joule 5 1566Google Scholar

    [68]

    Dou J, Ma Y, Niu X, Zhou W, Wei X, Dou J, Cui Z, Song Q, Song T, Zhou H, Zhu C, Bai Y, Chen Q 2024 J. Energy Chem. 88 64Google Scholar

    [69]

    Duong T, Pham H, Kho T C, Phang P, Fong K C, Yan D, Yin Y, Peng J, Mahmud M A, Gharibzadeh S, Nejand B A, Hossain I M, Khan M R, Mozaffari N, Wu Y, Shen H, Zheng J, Mai H, Liang W, Samundsett C, Stocks M, McIntosh K, Andersson G G, Lemmer U, Richards B S, Paetzold U W, Ho-Ballie A, Liu Y, Macdonald D, Blakers A, Wong-Leung J, White T, Weber K, Catchpole K 2020 Adv. Energy Mater. 10 1903553Google Scholar

    [70]

    Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874Google Scholar

    [71]

    Liu X, Chen Z L, Wang H, Zhang W Q, Dong H, Wang P X, Shao Y C 2024 Chin. Phys. B 33 048101Google Scholar

    [72]

    De Bastiani M, Jalmood R, Liu J, Ossig C, Vlk A, Vegso K, Babics M, Isikgor F H, Selvin A S, Azmi R, Ugur E, Banerjee S, Mirabelli A J, Aydin E, Allen T G, Ur Rehman A, Van Kerschaver E, Siffalovic P, Stuckelberger M E, Ledinsky M, De Wolf S 2022 Adv. Funct. Mater. 33 2205557Google Scholar

    [73]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [74]

    Ghannam H, Bazin C, Chahboun A, Turmine M 2018 CrystEngComm 20 6618Google Scholar

    [75]

    Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari Ayodhya N 2016 Nat. Energy 2 16190Google Scholar

    [76]

    Aydin E, Altinkaya C, Smirnov Y, Yaqin M A, Zanoni K P S, Paliwal A, Firdaus Y, Allen T G, Anthopoulos T D, Bolink H J, Morales-Masis M, De Wolf S 2021 Matter 4 3549Google Scholar

    [77]

    Aydin E, De Bastiani M, Yang X, Sajjad M, Aljamaan F, Smirnov Y, Hedhili M N, Liu W, Allen T G, Xu L, Van Kerschaver E, Morales–Masis M, Schwingenschlögl U, De Wolf S 2019 Adv. Funct. Mater. 29 1901741Google Scholar

    [78]

    Wahl T, Hanisch J, Meier S, Schultes M, Ahlswede E 2018 Org. Electron. 54 48Google Scholar

    [79]

    Werner J, Dubuis G, Walter A, Löper P, Moon S J, Nicolay S, Morales-Masis M, De Wolf S, Niesen B, Ballif C 2015 Sol. Energy Mater. Sol. Cells 141 407Google Scholar

    [80]

    Liu K, Chen B, Yu Z J, Wu Y, Huang Z, Jia X, Li C, Spronk D, Wang Z, Wang Z, Qu S, Holman Z C, Huang J 2022 J. Mater. Chem. A 10 1343Google Scholar

    [81]

    Härtel M, Li B, Mariotti S, Wagner P, Ruske F, Albrecht S, Szyszka B 2023 Sol. Energy Mater. Sol. Cells 252 112180Google Scholar

    [82]

    Tockhorn P, Sutter J, Cruz A, Wagner P, Jäger K, Yoo D, Lang F, Grischek M, Li B, Li J, Shargaieva O, Unger E, Al-Ashouri A, Köhnen E, Stolterfoht M, Neher D, Schlatmann R, Rech B, Stannowski B, Albrecht S, Becker C 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [83]

    Yamamoto K, Mishima R, Uzu H, Adachi D 2023 Jpn. J. Appl. Phys. 62 Sk1021Google Scholar

    [84]

    Chapa M, Alexandre M F, Mendes M J, Águas H, Fortunato E, Martins R 2019 ACS Appl. Energy Mater. 2 3979Google Scholar

    [85]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [86]

    Battaglia C, Cuevas A, De Wolf S 2016 Energy Environ. Sci. 9 1552Google Scholar

    [87]

    Eugene A. Irene R G 1987 Appl. Surf. Sci. 30 1Google Scholar

    [88]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [89]

    De Bastiani M, Subbiah A S, Babics M, Ugur E, Xu L, Liu J, Allen T G, Aydin E, De Wolf S 2022 Joule 6 1431Google Scholar

    [90]

    De Rose A, Erath D, Nikitina V, Schube J, Güldali D, Minat Ä, Rößler T, Richter A, Kirner S, Kraft A, Lorenz A 2023 Sol. Energy Mater. Sol. Cells 261 112515Google Scholar

    [91]

    Chu Q Q, Sun Z, Wang D, Cheng B, Wang H, Wong C P, Fang B 2023 Matter 6 3838Google Scholar

    [92]

    Shi L, Bucknall M P, Young T L, Zhang M, Hu L, Bing J, Lee D S, Kim J, Wu T, Takamure N, McKenzie D R, Huang S, Green M A, Ho-Baillie A W Y 2020 Science 368 1328Google Scholar

  • 图 1  叠层电池工作原理, 单结(a)和多结(b)光伏电池中的光吸收示意图; 叠层太阳能电池中四端子(c)和两端子(d)叠层电池; (e) 金属卤化物钙钛矿的晶体结构[10]

    Fig. 1.  Introduction of tandem PVs: Schematic illustration showing light absorption in single (a) and multijunction (b) PVs; four-terminal (c) and two-terminal (d) tandem PVs; (e) crystal structure of metal halide perovskites[10].

    图 2  (a) 两端子(2T)钙钛矿/异质结叠层太阳能电池结构设计及其典型扫描电镜(SEM)图示[14]; (b) 四端子(4T)钙钛矿/异质结叠层电池结构设计及各单结电池对应典型SEM图示[15,16]

    Fig. 2.  (a) Structure of two-terminal (2T) perovskite/heterojunction tandem solar cells (PTSC), and scanning electron microscopy (SEM) of 2T PTSC[14]; (b) four-terminal (4T) PTSC structure, and SEM of each single-junction solar cell[15,16].

    图 3  光诱导卤化物偏析机制 (a) 在光照下从 I/Br 混合相中形成富碘相的成核[32]; (b) 不同化合物的带隙与相对溴浓度(x)的函数关系[32]

    Fig. 3.  Mechanism of photo-induced halide polarization: (a) Nucleation of an I-rich phase from an I/Br mixed phase under light irradiation[32]; (b) band gap of different compounds as a function of relative bromine concentration, x [32]

    图 4  超分子淀粉碘的结构性质及其与钙钛矿的相互作用机制[47]

    Fig. 4.  Structure of supramolecular amyloid iodine and its mechanism of interaction with perovskite[47].

    图 5  PI优化的钙钛矿/异质结叠层太阳能电池结构与性能[52]

    Fig. 5.  Piperazine iodide-optimised structure and performance of perovskite heterojunction tandem solar cells[52].

    图 6  表面存在SAM锚定的NiOx分子结构, 分子结构和侧视图 (a) MeO-2PACz[59]; (b) MeO-4PADBC[59]; (c) MeO-4PADBC锚定在NiOx纳米颗粒上[59]

    Fig. 6.  Molecular structure of HTL. Molecular structure and side view of (a) MeO-2PACz, (b) MeO-4PADBC, and (c) MeO-4PADBC anchoring on NiOx nanoparticles as HTL in PSC[59].

    图 7  (a) PSC 中 PCE 创纪录的最新进展[66]; (b) 具有记录PCE的器件结构和提高PSC PCE的接口工程[66]; (c) FOA 的 3D 结构[66]; (d) FOA处理过程[66]; (e) SnO2, SnO2-FOA 和钙钛矿的能级排列[66]; (f) FOA分布及其对上部钙钛矿晶体生长的调节[66]; (g) FOA在掩埋SnO2/钙钛矿界面处的钝化功能[66]

    Fig. 7.  (a) Recent advances with the record PCE in PSCs[66]; (b) the device structure with record PCE and the interface engineering boosting the PCE of PSCs[66]; (c) the 3D structure of FOA[66]; (d) the procedures of the FOA treatment[66]; (e) energy level alignment of SnO2, SnO2-FOA, and perovskite[66]; (f) distribution of FOA and its regulation for upper perovskite crystal growth[66]; (g) the passivation function of FOA at the buried SnO2/perovskite interface.[66]

    图 8  双面钙钛矿/晶硅叠层太阳能电池的制作步骤[89]

    Fig. 8.  Fabrication steps for bifacial perovskite/silicon tandem solar cells[89].

    图 9  用于“软着陆”沉积的替代先进溅射设计和其他替代 PVD 技术[76] (a) 磁控管溅射; (b) 面对靶溅射; (c) 气流溅射系统; (d) 反应性等离子体沉积(空心阴极离子镀); (e) 离子束溅射; (f) 脉冲激光沉积; (g) 氧化膜溅射沉积过程与底层基板的损坏机制

    Fig. 9.  Schematic demonstrations of alternative advanced sputtering designs and other alternative PVD techniques for ‘‘soft-landing’’ deposition[76]: (a) Magnetron sputtering; (b) facing target sputtering; (c) gas-flow sputtering system; (d) reactive plasma deposition (hollow cathode ion plating); (e) ion beam sputtering; (f) pulsed laser deposition; (g) the sputtering process of oxide films and damage mechanisms of the underlying substrate during the sputter deposition.

    图 10  纳米绒面叠层结构与光学设计[82], 叠层正面和背面的SEM横截面图 (a)平面; (b) 纳米绒面; (c) 纳米绒面+RDBL反射器; (d) 带有纳米绒面结构的晶硅底电池沉积接触层前的 AFM 图像; (e) 在约1 cm2的正面银环(左)和背面的 RDBL(右)之间的叠层器件

    Fig. 10.  Nanotextured PSTSC design[82]. SEM cross-section micrographs of the front and rear side of (a) planar, (b) nanotextured, (c) nanotextured + RDBL PSTSCs; (d) AFM image of the nanostructured silicon bottom cell front side prior to the deposition of the contact layers[82]; (e) photographs of the final PSTSC in between the front-side silver ring of approximately 1 cm2 (left) and the RDBL on the rear side (right).

    图 11  (a) 具有 ITO 中间层或 nc-Si:H 复合结的钙钛矿/异质结串联器件J-V 特性对比; 二次电子 SEM 图像, 单独沉积在ITO复合层上的spiro-TTB(b), 以及退火后SEM对比(c); 沉积在 nc-Si:H 复合结上的spiro-TTB的SEM图像(d)与150 ℃下退火后SEM (e)对比[85]

    Fig. 11.  Comparison between different recombination junctions. (a) J–V characteristics of fully textured perovskite/SHJ tandem devices that feature either an ITO or an nc-Si:H recombination junction[85]. Top view secondary electron SEM images of spiro-TTB as deposited on the ITO recombination layer (b) and after annealing at 150 ℃ (c). SEM images of spiro-TTB as deposited on the nc-Si:H recombination junction (d) and after annealing at 150 ℃ (e) [85].

    图 12  双面电池的双光源检测(a)与单光源反射检测(b)[89]

    Fig. 12.  Two possible setups for the characterization of the bifacial tandem: (a) Double light sources; (b) single light source[89].

    图 13  IEC 61215:2016湿热和热循环试验用太阳能电池样品与结构图[92] (a) 封装前电池的金属侧后表面(红色方块表示有效区域); (b) 聚异丁烯(PIB)基聚合物的毯式封装; (c) 基于PO的毯式密封; (d) 基于PIB边缘密封后电池的“前”视图(从上层看); (e), (f) 各封装方案的横截面

    Fig. 13.  Solar cells for IEC 61215:2016 damp heat and thermal cycling tests[92]: (a) “Rear” or metal-side view of PSC before packaging (red square denotes the active area); (b) “front” view (from the superstrate side) of PSC after PIB-based blanket encapsulation; (c) PO-based blanket encapsulation; (d) PIB edge seal; (e), (f) illustrations of the cross sections of the respective encapsulation schemes (not to scale).

  • [1]

    Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789Google Scholar

    [2]

    Yu J, Li J, Zhao Y, Lambertz A, Chen T, Duan W, Liu W, Yang X, Huang Y, Ding K 2021 Sol. Energy Mater. Sol. Cells 224 110993Google Scholar

    [3]

    Niewelt T, Steinhauser B, Richter A, Veith-Wolf B, Fell A, Hammann B, Grant N E, Black L, Tan J, Youssef A, Murphy J D, Schmidt J, Schubert M C, Glunz S W 2022 Sol. Energy Mater. Sol. Cells 235 111467Google Scholar

    [4]

    Yu W, Li F, Huang T, Li W, Wu T 2023 The Innovation 4 100363Google Scholar

    [5]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [6]

    Liang T S, Pravettoni M, Deline C, Stein J S, Kopecek R, Singh J P, Luo W, Wang Y, Aberle A G, Khoo Y S 2019 Energy Environ. Sci. 12 427Google Scholar

    [7]

    Haschke J, Seif J P, Riesen Y, Tomasi A, Cattin J, Tous L, Choulat P, Aleman M, Cornagliotti E, Uruena A, Russell R, Duerinckx F, Champliaud J, Levrat J, Abdallah A A, Aïssa B, Tabet N, Wyrsch N, Despeisse M, Szlufcik J, De Wolf S, Ballif C 2017 Energy Environ. Sci. 10 1196Google Scholar

    [8]

    Boccard M, Ballif C 2020 ACS Energy Lett. 5 1077Google Scholar

    [9]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar

    [10]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [11]

    Lin X, Cui D, Luo X, Zhang C, Han Q, Wang Y, Han L 2020 Energy Environ. Sci. 13 3823Google Scholar

    [12]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [13]

    Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar

    [14]

    Ugur E, Aydin E, Bastiani M D, Harrison G T, Yildirim B K, Teale S, Chen B, Liu J, Wang M, Seitkhan A, Babics M, Subbiah A S, Said A A, Azmi R, Rehman A u, Allen T G, Schulz P, Sargent E H, Laquai F, Wolf S D 2023 Matter 6 2919Google Scholar

    [15]

    Sadegh F, Akin S, Moghadam M, Keshavarzi R, Mirkhani V, Ruiz‐Preciado M A, Akman E, Zhang H, Amini M, Tangestaninejad S, Mohammadpoor‐Baltork I, Graetzel M, Hagfeldt A, Tress W 2021 Adv. Funct. Mater. 31 2102237Google Scholar

    [16]

    Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater. 12 2200015Google Scholar

    [17]

    Duan L, Walter D, Chang N, Bullock J, Kang D, Phang S P, Weber K, White T, Macdonald D, Catchpole K, Shen H 2023 Nat. Rev. Mater. 8 261Google Scholar

    [18]

    Chin X Y , Turkay D , Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M. , Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar

    [19]

    Kim S, Trinh T T, Park J, Pham D P, Lee S, Do H B, Dang N N, Dao V A, Kim J, Yi J 2021 Sci. Rep. 11 15524Google Scholar

    [20]

    Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar

    [21]

    Hou F, Yan L, Shi B, Chen J, Zhu S, Ren Q, An S, Zhou Z, Ren H, Wei C, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Zhang D, Zhao Y, Zhang X 2019 ACS Appl. Energy Mater. 2 243Google Scholar

    [22]

    Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar

    [23]

    Xu K, Al-Ashouri A, Peng Z W, Köhnen E, Hempel H, Akhundova F, Marquez J A, Tockhorn P, Shargaieva O, Ruske F, Zhang J, Dagar J, Stannowski B, Unold T, Abou-Ras D, Unger E, Korte L, Albrecht S 2022 ACS Energy Lett. 7 3600Google Scholar

    [24]

    Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C, Huang J 2020 Joule 4 850Google Scholar

    [25]

    Xiao K, Lin Y H, Zhang M, Oliver R D J, Wang X, Liu Z , Luo X, Li J, Lai D, Luo H W, Lin R X, Xu J, Hou Y, Snaith H J, Tan H 2022 Science 376 762Google Scholar

    [26]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [27]

    Saki Z, Byranvand M M, Taghavinia N, Kedia M, Saliba M 2021 Energy Environ. Sci. 14 5690Google Scholar

    [28]

    Li H, Zhou J, Tan L, Li M, Jiang C, Wang S, Zhao X, Liu Y, Zhang Y, Ye Y, Tress W, Yi C 2022 Sci. Adv. 8 eabo7422Google Scholar

    [29]

    Nguyen V S, Zimmermann I, Grépin E, Medjoubi K, Jutteau S, Donsanti F, Bruhat E, Duchatelet A, Berson S, Rousset J 2023 Mater. Sci. Semicond. Process. 158 107358Google Scholar

    [30]

    De Bastiani M, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, Isikgor F H, Liu J, Xu L, Chen B, Van Kerschaver E, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar

    [31]

    Farooq U, Ishaq M, Shah U A, Chen S, Zheng Z H, Azam M, Su Z H, Tang R, Fan P, Bai Y, Liang G X 2022 Nano Energy 92 106710Google Scholar

    [32]

    Chen Z, Brocks G, Tao S, Bobbert P A 2021 Nat. Commun. 12 2687Google Scholar

    [33]

    Draguta S, Sharia O, Yoon S J, Brennan M C, Morozov Y V, Manser J S, Kamat P V, Schneider W F, Kuno M 2017 Nat. Commun. 8 200Google Scholar

    [34]

    Liu X, Luo D, Lu Z H, Yun J S, Saliba M, Seok S I, Zhang W 2023 Nat. Rev. Chem. 7 462Google Scholar

    [35]

    Subbiah A S, Isikgor F H, Howells C T, De Bastiani M, Liu J, Aydin E, Furlan F, Allen T G, Xu F, Zhumagali S, Hoogland S, Sargent E H, McCulloch I, De Wolf S 2020 ACS Energy Lett. 5 3034Google Scholar

    [36]

    Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar

    [37]

    Wei Q, Zhang Q, Xiang L, Zhang S, Liu J, Yang X, Ke Y, Ning Z 2021 J. Phys. Chem. Lett. 12 6492Google Scholar

    [38]

    Yang G, Ni Z, Yu Z J, Larson B W, Yu Z, Chen B, Alasfour A, Xiao X, Luther J M, Holman Z C, Huang J 2022 Nat. Photonics 16 588Google Scholar

    [39]

    Sun C, Wei J, Zhao J, Jiang Y, Wang Y, Hu H, Wang X, Zhang Y, Yuan M 2021 Nanophotonics 10 2157Google Scholar

    [40]

    Zhang F, Tu B B, Yang S F, Fan K, Liu Z L, Xiong Z J, Zhang J, Li W, Huang H T, Yu C, Jen A K Y, Yao K 2023 Adv. Mater. 35 2303139Google Scholar

    [41]

    Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar

    [42]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar

    [43]

    Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Science 365 687Google Scholar

    [44]

    Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar

    [45]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279Google Scholar

    [46]

    Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L, Yan C 2019 Science 363 265Google Scholar

    [47]

    Zhang Y, Song Q Z, Liu G L, Chen Y H, Guo Z Y, Li N X, Niu X X, Qiu Z W, Zhou W T, Huang Z J, Zhu C, Zai H C, Ma S, Bai Y, Chen Q, Huang W C, Zhao Q, Zhou H P 2023 Nat. Photonics 17 1066Google Scholar

    [48]

    Elshorbagy M H, López-Fraguas E, Chaudhry F A, Sánchez-Pena J M, Vergaz R, García-Cámara B 2020 Sci. Rep. 10 2271Google Scholar

    [49]

    Khampa W, Bhoomanee C, Musikpan W, Passatorntaschakorn W, Rodwihok C, Kim H S, Gardchareon A, Ruankham P, Wongratanaphisan D 2023 Appl. Surf. Sci. 637 157933Google Scholar

    [50]

    Aydin E, De Bastiani M, De Wolf S 2019 Adv. Mater. 31 1900428Google Scholar

    [51]

    Liu Z, Li H J, Chu Z J, Xia R, Wen J, Mo Y, Zhu H S, Luo H W, Zheng X T, Huang Z L, Luo X, Wang B, Zhang X L, Yang G T, Feng Z Q, Chen Y F, Kong W C, Gao J F, Tan H R 2024 Adv. Mater. 36 2308370Google Scholar

    [52]

    Mariotti S, Köhnen K, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine L, Mantione D, Al-Ashouri A, Härtel M S, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S 2023 Science 381 63Google Scholar

    [53]

    Liu J, Bastiani M D, Aydin E, Harrison G T, Gao Y, Pradhan R R, Eswaran M K, Mandal M, Yan W, Seitkhan A, Babics M, Subbiah A S, Ugur E, Xu F, Xu L, Wang M, Rehman A, Razzaq A, Kang J, Azmi R, Said A A, Isikgor F H, Allen T G, Andrienko D, Schwingenschlögl U, Laquai F, De Wolf S 2022 Science 377 302Google Scholar

    [54]

    Zheng J, Wang G, Duan W, Mahmud M A, Yi H, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar

    [55]

    Dagar J, Fenske M, Al-Ashouri A, Schultz C, Li B, Köbler H, Munir R, Parmasivam G, Li J, Levine I, Merdasa A, Kegelmann L, Näsström H, Marquez J A, Unold T, Többens D M, Schlatmann R, Stegemann B, Abate A, Albrecht S, Unger E 2021 ACS Appl. Mater. Interfaces 13 13022Google Scholar

    [56]

    Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez J A, Vilches A B M, Kasparavicius E, Smith J A, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar

    [57]

    Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, Wu J, Liu C, Wan Z, Jia C, Li N, Hauch J, Brabec C J 2021 Nat. Energy 7 144Google Scholar

    [58]

    Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar

    [59]

    Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z, Zhu Z 2023 Science 382 284Google Scholar

    [60]

    Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen Z G, Du Y, Wang L, Huang J 2019 ACS Energy Lett. 4 1231Google Scholar

    [61]

    Chang Q, Bao D, Chen B, Hu H, Chen X, Sun H, Lam Y M, Zhu J X, Zhao D, Chia E E M 2022 Commun. Phys. 5 187Google Scholar

    [62]

    Peng W, Mao K, Cai F, Meng H, Zhu Z, Li T, Yuan S, Xu Z, Feng X, Xu J, Michael D. McGehee, Xu J 2023 Science 379 683Google Scholar

    [63]

    Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J 2019 Sci. Adv. 5 8925Google Scholar

    [64]

    Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H 2020 Science 367 1135Google Scholar

    [65]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q, Han Q, Zhang Y, Han L 2022 Sci. Chin. Chem. 65 1321Google Scholar

    [66]

    Ji X, Bi L, Fu Q, Li B, Wang J, Jeong S Y, Feng K, Ma S, Liao Q, Lin F R, Woo H Y, Lu L, Jen A K Y, Guo X 2023 Adv. Mater. 35 2303665Google Scholar

    [67]

    Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A u, Van Kerschaver E, Baran D, McCulloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, De Wolf S 2021 Joule 5 1566Google Scholar

    [68]

    Dou J, Ma Y, Niu X, Zhou W, Wei X, Dou J, Cui Z, Song Q, Song T, Zhou H, Zhu C, Bai Y, Chen Q 2024 J. Energy Chem. 88 64Google Scholar

    [69]

    Duong T, Pham H, Kho T C, Phang P, Fong K C, Yan D, Yin Y, Peng J, Mahmud M A, Gharibzadeh S, Nejand B A, Hossain I M, Khan M R, Mozaffari N, Wu Y, Shen H, Zheng J, Mai H, Liang W, Samundsett C, Stocks M, McIntosh K, Andersson G G, Lemmer U, Richards B S, Paetzold U W, Ho-Ballie A, Liu Y, Macdonald D, Blakers A, Wong-Leung J, White T, Weber K, Catchpole K 2020 Adv. Energy Mater. 10 1903553Google Scholar

    [70]

    Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874Google Scholar

    [71]

    Liu X, Chen Z L, Wang H, Zhang W Q, Dong H, Wang P X, Shao Y C 2024 Chin. Phys. B 33 048101Google Scholar

    [72]

    De Bastiani M, Jalmood R, Liu J, Ossig C, Vlk A, Vegso K, Babics M, Isikgor F H, Selvin A S, Azmi R, Ugur E, Banerjee S, Mirabelli A J, Aydin E, Allen T G, Ur Rehman A, Van Kerschaver E, Siffalovic P, Stuckelberger M E, Ledinsky M, De Wolf S 2022 Adv. Funct. Mater. 33 2205557Google Scholar

    [73]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [74]

    Ghannam H, Bazin C, Chahboun A, Turmine M 2018 CrystEngComm 20 6618Google Scholar

    [75]

    Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari Ayodhya N 2016 Nat. Energy 2 16190Google Scholar

    [76]

    Aydin E, Altinkaya C, Smirnov Y, Yaqin M A, Zanoni K P S, Paliwal A, Firdaus Y, Allen T G, Anthopoulos T D, Bolink H J, Morales-Masis M, De Wolf S 2021 Matter 4 3549Google Scholar

    [77]

    Aydin E, De Bastiani M, Yang X, Sajjad M, Aljamaan F, Smirnov Y, Hedhili M N, Liu W, Allen T G, Xu L, Van Kerschaver E, Morales–Masis M, Schwingenschlögl U, De Wolf S 2019 Adv. Funct. Mater. 29 1901741Google Scholar

    [78]

    Wahl T, Hanisch J, Meier S, Schultes M, Ahlswede E 2018 Org. Electron. 54 48Google Scholar

    [79]

    Werner J, Dubuis G, Walter A, Löper P, Moon S J, Nicolay S, Morales-Masis M, De Wolf S, Niesen B, Ballif C 2015 Sol. Energy Mater. Sol. Cells 141 407Google Scholar

    [80]

    Liu K, Chen B, Yu Z J, Wu Y, Huang Z, Jia X, Li C, Spronk D, Wang Z, Wang Z, Qu S, Holman Z C, Huang J 2022 J. Mater. Chem. A 10 1343Google Scholar

    [81]

    Härtel M, Li B, Mariotti S, Wagner P, Ruske F, Albrecht S, Szyszka B 2023 Sol. Energy Mater. Sol. Cells 252 112180Google Scholar

    [82]

    Tockhorn P, Sutter J, Cruz A, Wagner P, Jäger K, Yoo D, Lang F, Grischek M, Li B, Li J, Shargaieva O, Unger E, Al-Ashouri A, Köhnen E, Stolterfoht M, Neher D, Schlatmann R, Rech B, Stannowski B, Albrecht S, Becker C 2022 Nat. Nanotechnol. 17 1214Google Scholar

    [83]

    Yamamoto K, Mishima R, Uzu H, Adachi D 2023 Jpn. J. Appl. Phys. 62 Sk1021Google Scholar

    [84]

    Chapa M, Alexandre M F, Mendes M J, Águas H, Fortunato E, Martins R 2019 ACS Appl. Energy Mater. 2 3979Google Scholar

    [85]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [86]

    Battaglia C, Cuevas A, De Wolf S 2016 Energy Environ. Sci. 9 1552Google Scholar

    [87]

    Eugene A. Irene R G 1987 Appl. Surf. Sci. 30 1Google Scholar

    [88]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [89]

    De Bastiani M, Subbiah A S, Babics M, Ugur E, Xu L, Liu J, Allen T G, Aydin E, De Wolf S 2022 Joule 6 1431Google Scholar

    [90]

    De Rose A, Erath D, Nikitina V, Schube J, Güldali D, Minat Ä, Rößler T, Richter A, Kirner S, Kraft A, Lorenz A 2023 Sol. Energy Mater. Sol. Cells 261 112515Google Scholar

    [91]

    Chu Q Q, Sun Z, Wang D, Cheng B, Wang H, Wong C P, Fang B 2023 Matter 6 3838Google Scholar

    [92]

    Shi L, Bucknall M P, Young T L, Zhang M, Hu L, Bing J, Lee D S, Kim J, Wu T, Takamure N, McKenzie D R, Huang S, Green M A, Ho-Baillie A W Y 2020 Science 368 1328Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [4] 方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画. 减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池. 物理学报, 2023, 72(5): 057302. doi: 10.7498/aps.72.20222209
    [5] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [6] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [7] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [8] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [9] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [10] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [11] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [12] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [13] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [16] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [20] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
计量
  • 文章访问数:  5580
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-01-29
  • 上网日期:  2024-02-19
  • 刊出日期:  2024-04-20

/

返回文章
返回