-
高效且稳定的钙钛矿/异质结叠层太阳能电池是学术界与工业界共同探索的方向, 目前小面积叠层太阳能电池效率优势已然非常明显, 但在商业化推进过程中, 叠层路线在电池结构设计与界面调控、钙钛矿材料选型与优化、器件尺寸放大以及稳定性等方面仍存在许多挑战. 本文通过收集相关文献资料, 包括实验数据和理论模拟结果, 对钙钛矿/异质结叠层太阳能电池的研究现状进行分析, 认为未来的研究方向可能涉及叠层顶电池的界面调控及组件互联结构设计等关键问题. 因此, 文章重点阐述钙钛矿/异质结叠层太阳能电池各关键材料层的优化选型、钙钛矿带隙优化与离子迁移抑制、层间界面传输调控、底电池连接层优化及组件互联与封装方式优化. 基于现有研究成果对叠层太阳能电池技术进行了总结和探索展望, 旨在为后续叠层太阳能电池结构设计的各关键问题提供方向性解决建议.
-
关键词:
- 钙钛矿材料 /
- 异质结太阳能电池 /
- 两端子与四端子叠层结构 /
- 商业化进程
Efficient and stable perovskite/heterojunction tandem solar cells (PTSC) are a direction of joint exploration in both academia and industry. Achieving efficient solar energy utilization by assembling structural layers with different bandgaps in an optical sequence is the original design strategy for PTSC. Through the reasonable distribution of the absorption spectra of each layer, the photoelectric conversion efficiency (PCE) of PTSC can theoretically be increased to more than 40%. At present, the efficiency advantage of small-area PTSC is well-established, but there are still many challenges in the commercialization of solar cell efficiency and stability. Therefore, in this work, the two-terminal (2T) and four-terminal (4T) stacking methods are regarded as the main structural routes, and the optimal design of the key structural layers of PTSC, bandgap adjustment, additive regulation, optimization of interlayer transport, and optimization of the module interconnection and encapsulation methods are focused on. Based on the existing research results, the key problems and solutions affecting the efficiency and stability of PTSC are summarized and outlooked, aiming to provide directional solutions to the key problems in the structural design of PTSC. In addition, from the application perspective, it is proposed that before the stability problem of the perovskite is fundamentally solved, the 4T PTSC is more likely to achieve product iteration and industrial efficiency improvement, with the expectation of taking the lead in commercialization. This work emphasizes the popularization and practical application of commercialization, with a perspective that is more in line with the market trend and close to the industrial demand, and is expected to provide an important reference for the commercialization of PTSC in the academic circles.-
Keywords:
- perovskite materials /
- heterojunction solar cell /
- two terminal and four terminal tandem structure /
- commercialization process
[1] Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789Google Scholar
[2] Yu J, Li J, Zhao Y, Lambertz A, Chen T, Duan W, Liu W, Yang X, Huang Y, Ding K 2021 Sol. Energy Mater. Sol. Cells 224 110993Google Scholar
[3] Niewelt T, Steinhauser B, Richter A, Veith-Wolf B, Fell A, Hammann B, Grant N E, Black L, Tan J, Youssef A, Murphy J D, Schmidt J, Schubert M C, Glunz S W 2022 Sol. Energy Mater. Sol. Cells 235 111467Google Scholar
[4] Yu W, Li F, Huang T, Li W, Wu T 2023 The Innovation 4 100363Google Scholar
[5] Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar
[6] Liang T S, Pravettoni M, Deline C, Stein J S, Kopecek R, Singh J P, Luo W, Wang Y, Aberle A G, Khoo Y S 2019 Energy Environ. Sci. 12 427Google Scholar
[7] Haschke J, Seif J P, Riesen Y, Tomasi A, Cattin J, Tous L, Choulat P, Aleman M, Cornagliotti E, Uruena A, Russell R, Duerinckx F, Champliaud J, Levrat J, Abdallah A A, Aïssa B, Tabet N, Wyrsch N, Despeisse M, Szlufcik J, De Wolf S, Ballif C 2017 Energy Environ. Sci. 10 1196Google Scholar
[8] Boccard M, Ballif C 2020 ACS Energy Lett. 5 1077Google Scholar
[9] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar
[10] Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar
[11] Lin X, Cui D, Luo X, Zhang C, Han Q, Wang Y, Han L 2020 Energy Environ. Sci. 13 3823Google Scholar
[12] Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 6 1600457Google Scholar
[13] Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar
[14] Ugur E, Aydin E, Bastiani M D, Harrison G T, Yildirim B K, Teale S, Chen B, Liu J, Wang M, Seitkhan A, Babics M, Subbiah A S, Said A A, Azmi R, Rehman A u, Allen T G, Schulz P, Sargent E H, Laquai F, Wolf S D 2023 Matter 6 2919Google Scholar
[15] Sadegh F, Akin S, Moghadam M, Keshavarzi R, Mirkhani V, Ruiz‐Preciado M A, Akman E, Zhang H, Amini M, Tangestaninejad S, Mohammadpoor‐Baltork I, Graetzel M, Hagfeldt A, Tress W 2021 Adv. Funct. Mater. 31 2102237Google Scholar
[16] Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater. 12 2200015Google Scholar
[17] Duan L, Walter D, Chang N, Bullock J, Kang D, Phang S P, Weber K, White T, Macdonald D, Catchpole K, Shen H 2023 Nat. Rev. Mater. 8 261Google Scholar
[18] Chin X Y , Turkay D , Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M. , Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar
[19] Kim S, Trinh T T, Park J, Pham D P, Lee S, Do H B, Dang N N, Dao V A, Kim J, Yi J 2021 Sci. Rep. 11 15524Google Scholar
[20] Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar
[21] Hou F, Yan L, Shi B, Chen J, Zhu S, Ren Q, An S, Zhou Z, Ren H, Wei C, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Zhang D, Zhao Y, Zhang X 2019 ACS Appl. Energy Mater. 2 243Google Scholar
[22] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[23] Xu K, Al-Ashouri A, Peng Z W, Köhnen E, Hempel H, Akhundova F, Marquez J A, Tockhorn P, Shargaieva O, Ruske F, Zhang J, Dagar J, Stannowski B, Unold T, Abou-Ras D, Unger E, Korte L, Albrecht S 2022 ACS Energy Lett. 7 3600Google Scholar
[24] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C, Huang J 2020 Joule 4 850Google Scholar
[25] Xiao K, Lin Y H, Zhang M, Oliver R D J, Wang X, Liu Z , Luo X, Li J, Lai D, Luo H W, Lin R X, Xu J, Hou Y, Snaith H J, Tan H 2022 Science 376 762Google Scholar
[26] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar
[27] Saki Z, Byranvand M M, Taghavinia N, Kedia M, Saliba M 2021 Energy Environ. Sci. 14 5690Google Scholar
[28] Li H, Zhou J, Tan L, Li M, Jiang C, Wang S, Zhao X, Liu Y, Zhang Y, Ye Y, Tress W, Yi C 2022 Sci. Adv. 8 eabo7422Google Scholar
[29] Nguyen V S, Zimmermann I, Grépin E, Medjoubi K, Jutteau S, Donsanti F, Bruhat E, Duchatelet A, Berson S, Rousset J 2023 Mater. Sci. Semicond. Process. 158 107358Google Scholar
[30] De Bastiani M, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, Isikgor F H, Liu J, Xu L, Chen B, Van Kerschaver E, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar
[31] Farooq U, Ishaq M, Shah U A, Chen S, Zheng Z H, Azam M, Su Z H, Tang R, Fan P, Bai Y, Liang G X 2022 Nano Energy 92 106710Google Scholar
[32] Chen Z, Brocks G, Tao S, Bobbert P A 2021 Nat. Commun. 12 2687Google Scholar
[33] Draguta S, Sharia O, Yoon S J, Brennan M C, Morozov Y V, Manser J S, Kamat P V, Schneider W F, Kuno M 2017 Nat. Commun. 8 200Google Scholar
[34] Liu X, Luo D, Lu Z H, Yun J S, Saliba M, Seok S I, Zhang W 2023 Nat. Rev. Chem. 7 462Google Scholar
[35] Subbiah A S, Isikgor F H, Howells C T, De Bastiani M, Liu J, Aydin E, Furlan F, Allen T G, Xu F, Zhumagali S, Hoogland S, Sargent E H, McCulloch I, De Wolf S 2020 ACS Energy Lett. 5 3034Google Scholar
[36] Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar
[37] Wei Q, Zhang Q, Xiang L, Zhang S, Liu J, Yang X, Ke Y, Ning Z 2021 J. Phys. Chem. Lett. 12 6492Google Scholar
[38] Yang G, Ni Z, Yu Z J, Larson B W, Yu Z, Chen B, Alasfour A, Xiao X, Luther J M, Holman Z C, Huang J 2022 Nat. Photonics 16 588Google Scholar
[39] Sun C, Wei J, Zhao J, Jiang Y, Wang Y, Hu H, Wang X, Zhang Y, Yuan M 2021 Nanophotonics 10 2157Google Scholar
[40] Zhang F, Tu B B, Yang S F, Fan K, Liu Z L, Xiong Z J, Zhang J, Li W, Huang H T, Yu C, Jen A K Y, Yao K 2023 Adv. Mater. 35 2303139Google Scholar
[41] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar
[42] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar
[43] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Science 365 687Google Scholar
[44] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[45] Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279Google Scholar
[46] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L, Yan C 2019 Science 363 265Google Scholar
[47] Zhang Y, Song Q Z, Liu G L, Chen Y H, Guo Z Y, Li N X, Niu X X, Qiu Z W, Zhou W T, Huang Z J, Zhu C, Zai H C, Ma S, Bai Y, Chen Q, Huang W C, Zhao Q, Zhou H P 2023 Nat. Photonics 17 1066Google Scholar
[48] Elshorbagy M H, López-Fraguas E, Chaudhry F A, Sánchez-Pena J M, Vergaz R, García-Cámara B 2020 Sci. Rep. 10 2271Google Scholar
[49] Khampa W, Bhoomanee C, Musikpan W, Passatorntaschakorn W, Rodwihok C, Kim H S, Gardchareon A, Ruankham P, Wongratanaphisan D 2023 Appl. Surf. Sci. 637 157933Google Scholar
[50] Aydin E, De Bastiani M, De Wolf S 2019 Adv. Mater. 31 1900428Google Scholar
[51] Liu Z, Li H J, Chu Z J, Xia R, Wen J, Mo Y, Zhu H S, Luo H W, Zheng X T, Huang Z L, Luo X, Wang B, Zhang X L, Yang G T, Feng Z Q, Chen Y F, Kong W C, Gao J F, Tan H R 2024 Adv. Mater. 36 2308370Google Scholar
[52] Mariotti S, Köhnen K, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine L, Mantione D, Al-Ashouri A, Härtel M S, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S 2023 Science 381 63Google Scholar
[53] Liu J, Bastiani M D, Aydin E, Harrison G T, Gao Y, Pradhan R R, Eswaran M K, Mandal M, Yan W, Seitkhan A, Babics M, Subbiah A S, Ugur E, Xu F, Xu L, Wang M, Rehman A, Razzaq A, Kang J, Azmi R, Said A A, Isikgor F H, Allen T G, Andrienko D, Schwingenschlögl U, Laquai F, De Wolf S 2022 Science 377 302Google Scholar
[54] Zheng J, Wang G, Duan W, Mahmud M A, Yi H, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar
[55] Dagar J, Fenske M, Al-Ashouri A, Schultz C, Li B, Köbler H, Munir R, Parmasivam G, Li J, Levine I, Merdasa A, Kegelmann L, Näsström H, Marquez J A, Unold T, Többens D M, Schlatmann R, Stegemann B, Abate A, Albrecht S, Unger E 2021 ACS Appl. Mater. Interfaces 13 13022Google Scholar
[56] Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez J A, Vilches A B M, Kasparavicius E, Smith J A, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar
[57] Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, Wu J, Liu C, Wan Z, Jia C, Li N, Hauch J, Brabec C J 2021 Nat. Energy 7 144Google Scholar
[58] Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar
[59] Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z, Zhu Z 2023 Science 382 284Google Scholar
[60] Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen Z G, Du Y, Wang L, Huang J 2019 ACS Energy Lett. 4 1231Google Scholar
[61] Chang Q, Bao D, Chen B, Hu H, Chen X, Sun H, Lam Y M, Zhu J X, Zhao D, Chia E E M 2022 Commun. Phys. 5 187Google Scholar
[62] Peng W, Mao K, Cai F, Meng H, Zhu Z, Li T, Yuan S, Xu Z, Feng X, Xu J, Michael D. McGehee, Xu J 2023 Science 379 683Google Scholar
[63] Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J 2019 Sci. Adv. 5 8925Google Scholar
[64] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H 2020 Science 367 1135Google Scholar
[65] Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q, Han Q, Zhang Y, Han L 2022 Sci. Chin. Chem. 65 1321Google Scholar
[66] Ji X, Bi L, Fu Q, Li B, Wang J, Jeong S Y, Feng K, Ma S, Liao Q, Lin F R, Woo H Y, Lu L, Jen A K Y, Guo X 2023 Adv. Mater. 35 2303665Google Scholar
[67] Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A u, Van Kerschaver E, Baran D, McCulloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, De Wolf S 2021 Joule 5 1566Google Scholar
[68] Dou J, Ma Y, Niu X, Zhou W, Wei X, Dou J, Cui Z, Song Q, Song T, Zhou H, Zhu C, Bai Y, Chen Q 2024 J. Energy Chem. 88 64Google Scholar
[69] Duong T, Pham H, Kho T C, Phang P, Fong K C, Yan D, Yin Y, Peng J, Mahmud M A, Gharibzadeh S, Nejand B A, Hossain I M, Khan M R, Mozaffari N, Wu Y, Shen H, Zheng J, Mai H, Liang W, Samundsett C, Stocks M, McIntosh K, Andersson G G, Lemmer U, Richards B S, Paetzold U W, Ho-Ballie A, Liu Y, Macdonald D, Blakers A, Wong-Leung J, White T, Weber K, Catchpole K 2020 Adv. Energy Mater. 10 1903553Google Scholar
[70] Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874Google Scholar
[71] Liu X, Chen Z L, Wang H, Zhang W Q, Dong H, Wang P X, Shao Y C 2024 Chin. Phys. B 33 048101Google Scholar
[72] De Bastiani M, Jalmood R, Liu J, Ossig C, Vlk A, Vegso K, Babics M, Isikgor F H, Selvin A S, Azmi R, Ugur E, Banerjee S, Mirabelli A J, Aydin E, Allen T G, Ur Rehman A, Van Kerschaver E, Siffalovic P, Stuckelberger M E, Ledinsky M, De Wolf S 2022 Adv. Funct. Mater. 33 2205557Google Scholar
[73] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar
[74] Ghannam H, Bazin C, Chahboun A, Turmine M 2018 CrystEngComm 20 6618Google Scholar
[75] Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari Ayodhya N 2016 Nat. Energy 2 16190Google Scholar
[76] Aydin E, Altinkaya C, Smirnov Y, Yaqin M A, Zanoni K P S, Paliwal A, Firdaus Y, Allen T G, Anthopoulos T D, Bolink H J, Morales-Masis M, De Wolf S 2021 Matter 4 3549Google Scholar
[77] Aydin E, De Bastiani M, Yang X, Sajjad M, Aljamaan F, Smirnov Y, Hedhili M N, Liu W, Allen T G, Xu L, Van Kerschaver E, Morales–Masis M, Schwingenschlögl U, De Wolf S 2019 Adv. Funct. Mater. 29 1901741Google Scholar
[78] Wahl T, Hanisch J, Meier S, Schultes M, Ahlswede E 2018 Org. Electron. 54 48Google Scholar
[79] Werner J, Dubuis G, Walter A, Löper P, Moon S J, Nicolay S, Morales-Masis M, De Wolf S, Niesen B, Ballif C 2015 Sol. Energy Mater. Sol. Cells 141 407Google Scholar
[80] Liu K, Chen B, Yu Z J, Wu Y, Huang Z, Jia X, Li C, Spronk D, Wang Z, Wang Z, Qu S, Holman Z C, Huang J 2022 J. Mater. Chem. A 10 1343Google Scholar
[81] Härtel M, Li B, Mariotti S, Wagner P, Ruske F, Albrecht S, Szyszka B 2023 Sol. Energy Mater. Sol. Cells 252 112180Google Scholar
[82] Tockhorn P, Sutter J, Cruz A, Wagner P, Jäger K, Yoo D, Lang F, Grischek M, Li B, Li J, Shargaieva O, Unger E, Al-Ashouri A, Köhnen E, Stolterfoht M, Neher D, Schlatmann R, Rech B, Stannowski B, Albrecht S, Becker C 2022 Nat. Nanotechnol. 17 1214Google Scholar
[83] Yamamoto K, Mishima R, Uzu H, Adachi D 2023 Jpn. J. Appl. Phys. 62 Sk1021Google Scholar
[84] Chapa M, Alexandre M F, Mendes M J, Águas H, Fortunato E, Martins R 2019 ACS Appl. Energy Mater. 2 3979Google Scholar
[85] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar
[86] Battaglia C, Cuevas A, De Wolf S 2016 Energy Environ. Sci. 9 1552Google Scholar
[87] Eugene A. Irene R G 1987 Appl. Surf. Sci. 30 1Google Scholar
[88] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar
Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar
[89] De Bastiani M, Subbiah A S, Babics M, Ugur E, Xu L, Liu J, Allen T G, Aydin E, De Wolf S 2022 Joule 6 1431Google Scholar
[90] De Rose A, Erath D, Nikitina V, Schube J, Güldali D, Minat Ä, Rößler T, Richter A, Kirner S, Kraft A, Lorenz A 2023 Sol. Energy Mater. Sol. Cells 261 112515Google Scholar
[91] Chu Q Q, Sun Z, Wang D, Cheng B, Wang H, Wong C P, Fang B 2023 Matter 6 3838Google Scholar
[92] Shi L, Bucknall M P, Young T L, Zhang M, Hu L, Bing J, Lee D S, Kim J, Wu T, Takamure N, McKenzie D R, Huang S, Green M A, Ho-Baillie A W Y 2020 Science 368 1328Google Scholar
-
图 1 叠层电池工作原理, 单结(a)和多结(b)光伏电池中的光吸收示意图; 叠层太阳能电池中四端子(c)和两端子(d)叠层电池; (e) 金属卤化物钙钛矿的晶体结构[10]
Fig. 1. Introduction of tandem PVs: Schematic illustration showing light absorption in single (a) and multijunction (b) PVs; four-terminal (c) and two-terminal (d) tandem PVs; (e) crystal structure of metal halide perovskites[10].
图 2 (a) 两端子(2T)钙钛矿/异质结叠层太阳能电池结构设计及其典型扫描电镜(SEM)图示[14]; (b) 四端子(4T)钙钛矿/异质结叠层电池结构设计及各单结电池对应典型SEM图示[15,16]
Fig. 2. (a) Structure of two-terminal (2T) perovskite/heterojunction tandem solar cells (PTSC), and scanning electron microscopy (SEM) of 2T PTSC[14]; (b) four-terminal (4T) PTSC structure, and SEM of each single-junction solar cell[15,16].
图 3 光诱导卤化物偏析机制 (a) 在光照下从 I/Br 混合相中形成富碘相的成核[32]; (b) 不同化合物的带隙与相对溴浓度(x)的函数关系[32]
Fig. 3. Mechanism of photo-induced halide polarization: (a) Nucleation of an I-rich phase from an I/Br mixed phase under light irradiation[32]; (b) band gap of different compounds as a function of relative bromine concentration, x [32]
图 7 (a) PSC 中 PCE 创纪录的最新进展[66]; (b) 具有记录PCE的器件结构和提高PSC PCE的接口工程[66]; (c) FOA 的 3D 结构[66]; (d) FOA处理过程[66]; (e) SnO2, SnO2-FOA 和钙钛矿的能级排列[66]; (f) FOA分布及其对上部钙钛矿晶体生长的调节[66]; (g) FOA在掩埋SnO2/钙钛矿界面处的钝化功能[66]
Fig. 7. (a) Recent advances with the record PCE in PSCs[66]; (b) the device structure with record PCE and the interface engineering boosting the PCE of PSCs[66]; (c) the 3D structure of FOA[66]; (d) the procedures of the FOA treatment[66]; (e) energy level alignment of SnO2, SnO2-FOA, and perovskite[66]; (f) distribution of FOA and its regulation for upper perovskite crystal growth[66]; (g) the passivation function of FOA at the buried SnO2/perovskite interface.[66]
图 9 用于“软着陆”沉积的替代先进溅射设计和其他替代 PVD 技术[76] (a) 磁控管溅射; (b) 面对靶溅射; (c) 气流溅射系统; (d) 反应性等离子体沉积(空心阴极离子镀); (e) 离子束溅射; (f) 脉冲激光沉积; (g) 氧化膜溅射沉积过程与底层基板的损坏机制
Fig. 9. Schematic demonstrations of alternative advanced sputtering designs and other alternative PVD techniques for ‘‘soft-landing’’ deposition[76]: (a) Magnetron sputtering; (b) facing target sputtering; (c) gas-flow sputtering system; (d) reactive plasma deposition (hollow cathode ion plating); (e) ion beam sputtering; (f) pulsed laser deposition; (g) the sputtering process of oxide films and damage mechanisms of the underlying substrate during the sputter deposition.
图 10 纳米绒面叠层结构与光学设计[82], 叠层正面和背面的SEM横截面图 (a)平面; (b) 纳米绒面; (c) 纳米绒面+RDBL反射器; (d) 带有纳米绒面结构的晶硅底电池沉积接触层前的 AFM 图像; (e) 在约1 cm2的正面银环(左)和背面的 RDBL(右)之间的叠层器件
Fig. 10. Nanotextured PSTSC design[82]. SEM cross-section micrographs of the front and rear side of (a) planar, (b) nanotextured, (c) nanotextured + RDBL PSTSCs; (d) AFM image of the nanostructured silicon bottom cell front side prior to the deposition of the contact layers[82]; (e) photographs of the final PSTSC in between the front-side silver ring of approximately 1 cm2 (left) and the RDBL on the rear side (right).
图 11 (a) 具有 ITO 中间层或 nc-Si:H 复合结的钙钛矿/异质结串联器件J-V 特性对比; 二次电子 SEM 图像, 单独沉积在ITO复合层上的spiro-TTB(b), 以及退火后SEM对比(c); 沉积在 nc-Si:H 复合结上的spiro-TTB的SEM图像(d)与150 ℃下退火后SEM (e)对比[85]
Fig. 11. Comparison between different recombination junctions. (a) J–V characteristics of fully textured perovskite/SHJ tandem devices that feature either an ITO or an nc-Si:H recombination junction[85]. Top view secondary electron SEM images of spiro-TTB as deposited on the ITO recombination layer (b) and after annealing at 150 ℃ (c). SEM images of spiro-TTB as deposited on the nc-Si:H recombination junction (d) and after annealing at 150 ℃ (e) [85].
图 13 IEC 61215:2016湿热和热循环试验用太阳能电池样品与结构图[92] (a) 封装前电池的金属侧后表面(红色方块表示有效区域); (b) 聚异丁烯(PIB)基聚合物的毯式封装; (c) 基于PO的毯式密封; (d) 基于PIB边缘密封后电池的“前”视图(从上层看); (e), (f) 各封装方案的横截面
Fig. 13. Solar cells for IEC 61215:2016 damp heat and thermal cycling tests[92]: (a) “Rear” or metal-side view of PSC before packaging (red square denotes the active area); (b) “front” view (from the superstrate side) of PSC after PIB-based blanket encapsulation; (c) PO-based blanket encapsulation; (d) PIB edge seal; (e), (f) illustrations of the cross sections of the respective encapsulation schemes (not to scale).
-
[1] Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789Google Scholar
[2] Yu J, Li J, Zhao Y, Lambertz A, Chen T, Duan W, Liu W, Yang X, Huang Y, Ding K 2021 Sol. Energy Mater. Sol. Cells 224 110993Google Scholar
[3] Niewelt T, Steinhauser B, Richter A, Veith-Wolf B, Fell A, Hammann B, Grant N E, Black L, Tan J, Youssef A, Murphy J D, Schmidt J, Schubert M C, Glunz S W 2022 Sol. Energy Mater. Sol. Cells 235 111467Google Scholar
[4] Yu W, Li F, Huang T, Li W, Wu T 2023 The Innovation 4 100363Google Scholar
[5] Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar
[6] Liang T S, Pravettoni M, Deline C, Stein J S, Kopecek R, Singh J P, Luo W, Wang Y, Aberle A G, Khoo Y S 2019 Energy Environ. Sci. 12 427Google Scholar
[7] Haschke J, Seif J P, Riesen Y, Tomasi A, Cattin J, Tous L, Choulat P, Aleman M, Cornagliotti E, Uruena A, Russell R, Duerinckx F, Champliaud J, Levrat J, Abdallah A A, Aïssa B, Tabet N, Wyrsch N, Despeisse M, Szlufcik J, De Wolf S, Ballif C 2017 Energy Environ. Sci. 10 1196Google Scholar
[8] Boccard M, Ballif C 2020 ACS Energy Lett. 5 1077Google Scholar
[9] Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar
[10] Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar
[11] Lin X, Cui D, Luo X, Zhang C, Han Q, Wang Y, Han L 2020 Energy Environ. Sci. 13 3823Google Scholar
[12] Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 6 1600457Google Scholar
[13] Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar
[14] Ugur E, Aydin E, Bastiani M D, Harrison G T, Yildirim B K, Teale S, Chen B, Liu J, Wang M, Seitkhan A, Babics M, Subbiah A S, Said A A, Azmi R, Rehman A u, Allen T G, Schulz P, Sargent E H, Laquai F, Wolf S D 2023 Matter 6 2919Google Scholar
[15] Sadegh F, Akin S, Moghadam M, Keshavarzi R, Mirkhani V, Ruiz‐Preciado M A, Akman E, Zhang H, Amini M, Tangestaninejad S, Mohammadpoor‐Baltork I, Graetzel M, Hagfeldt A, Tress W 2021 Adv. Funct. Mater. 31 2102237Google Scholar
[16] Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater. 12 2200015Google Scholar
[17] Duan L, Walter D, Chang N, Bullock J, Kang D, Phang S P, Weber K, White T, Macdonald D, Catchpole K, Shen H 2023 Nat. Rev. Mater. 8 261Google Scholar
[18] Chin X Y , Turkay D , Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M. , Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar
[19] Kim S, Trinh T T, Park J, Pham D P, Lee S, Do H B, Dang N N, Dao V A, Kim J, Yi J 2021 Sci. Rep. 11 15524Google Scholar
[20] Jaysankar M, Raul B A L, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J 2018 ACS Energy Lett. 4 259Google Scholar
[21] Hou F, Yan L, Shi B, Chen J, Zhu S, Ren Q, An S, Zhou Z, Ren H, Wei C, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Zhang D, Zhao Y, Zhang X 2019 ACS Appl. Energy Mater. 2 243Google Scholar
[22] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[23] Xu K, Al-Ashouri A, Peng Z W, Köhnen E, Hempel H, Akhundova F, Marquez J A, Tockhorn P, Shargaieva O, Ruske F, Zhang J, Dagar J, Stannowski B, Unold T, Abou-Ras D, Unger E, Korte L, Albrecht S 2022 ACS Energy Lett. 7 3600Google Scholar
[24] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C, Huang J 2020 Joule 4 850Google Scholar
[25] Xiao K, Lin Y H, Zhang M, Oliver R D J, Wang X, Liu Z , Luo X, Li J, Lai D, Luo H W, Lin R X, Xu J, Hou Y, Snaith H J, Tan H 2022 Science 376 762Google Scholar
[26] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar
[27] Saki Z, Byranvand M M, Taghavinia N, Kedia M, Saliba M 2021 Energy Environ. Sci. 14 5690Google Scholar
[28] Li H, Zhou J, Tan L, Li M, Jiang C, Wang S, Zhao X, Liu Y, Zhang Y, Ye Y, Tress W, Yi C 2022 Sci. Adv. 8 eabo7422Google Scholar
[29] Nguyen V S, Zimmermann I, Grépin E, Medjoubi K, Jutteau S, Donsanti F, Bruhat E, Duchatelet A, Berson S, Rousset J 2023 Mater. Sci. Semicond. Process. 158 107358Google Scholar
[30] De Bastiani M, Mirabelli A J, Hou Y, Gota F, Aydin E, Allen T G, Troughton J, Subbiah A S, Isikgor F H, Liu J, Xu L, Chen B, Van Kerschaver E, Baran D, Fraboni B, Salvador M F, Paetzold U W, Sargent E H, De Wolf S 2021 Nat. Energy 6 167Google Scholar
[31] Farooq U, Ishaq M, Shah U A, Chen S, Zheng Z H, Azam M, Su Z H, Tang R, Fan P, Bai Y, Liang G X 2022 Nano Energy 92 106710Google Scholar
[32] Chen Z, Brocks G, Tao S, Bobbert P A 2021 Nat. Commun. 12 2687Google Scholar
[33] Draguta S, Sharia O, Yoon S J, Brennan M C, Morozov Y V, Manser J S, Kamat P V, Schneider W F, Kuno M 2017 Nat. Commun. 8 200Google Scholar
[34] Liu X, Luo D, Lu Z H, Yun J S, Saliba M, Seok S I, Zhang W 2023 Nat. Rev. Chem. 7 462Google Scholar
[35] Subbiah A S, Isikgor F H, Howells C T, De Bastiani M, Liu J, Aydin E, Furlan F, Allen T G, Xu F, Zhumagali S, Hoogland S, Sargent E H, McCulloch I, De Wolf S 2020 ACS Energy Lett. 5 3034Google Scholar
[36] Zhang X, Shen J X, Turiansky M E, Van de Walle C G 2021 Nat. Mater. 20 971Google Scholar
[37] Wei Q, Zhang Q, Xiang L, Zhang S, Liu J, Yang X, Ke Y, Ning Z 2021 J. Phys. Chem. Lett. 12 6492Google Scholar
[38] Yang G, Ni Z, Yu Z J, Larson B W, Yu Z, Chen B, Alasfour A, Xiao X, Luther J M, Holman Z C, Huang J 2022 Nat. Photonics 16 588Google Scholar
[39] Sun C, Wei J, Zhao J, Jiang Y, Wang Y, Hu H, Wang X, Zhang Y, Yuan M 2021 Nanophotonics 10 2157Google Scholar
[40] Zhang F, Tu B B, Yang S F, Fan K, Liu Z L, Xiong Z J, Zhang J, Li W, Huang H T, Yu C, Jen A K Y, Yao K 2023 Adv. Mater. 35 2303139Google Scholar
[41] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Grätzel M, Yang X, Han L 2017 Nat. Commun. 8 15330Google Scholar
[42] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar
[43] Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L 2019 Science 365 687Google Scholar
[44] Nie W, Blancon J C, Neukirch A J, Appavoo K, Tsai H, Chhowalla M, Alam M A, Sfeir M Y, Katan C, Even J, Tretiak S, Crochet J J, Gupta G, Mohite A D 2016 Nat. Commun. 7 11574Google Scholar
[45] Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279Google Scholar
[46] Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun L, Yan C 2019 Science 363 265Google Scholar
[47] Zhang Y, Song Q Z, Liu G L, Chen Y H, Guo Z Y, Li N X, Niu X X, Qiu Z W, Zhou W T, Huang Z J, Zhu C, Zai H C, Ma S, Bai Y, Chen Q, Huang W C, Zhao Q, Zhou H P 2023 Nat. Photonics 17 1066Google Scholar
[48] Elshorbagy M H, López-Fraguas E, Chaudhry F A, Sánchez-Pena J M, Vergaz R, García-Cámara B 2020 Sci. Rep. 10 2271Google Scholar
[49] Khampa W, Bhoomanee C, Musikpan W, Passatorntaschakorn W, Rodwihok C, Kim H S, Gardchareon A, Ruankham P, Wongratanaphisan D 2023 Appl. Surf. Sci. 637 157933Google Scholar
[50] Aydin E, De Bastiani M, De Wolf S 2019 Adv. Mater. 31 1900428Google Scholar
[51] Liu Z, Li H J, Chu Z J, Xia R, Wen J, Mo Y, Zhu H S, Luo H W, Zheng X T, Huang Z L, Luo X, Wang B, Zhang X L, Yang G T, Feng Z Q, Chen Y F, Kong W C, Gao J F, Tan H R 2024 Adv. Mater. 36 2308370Google Scholar
[52] Mariotti S, Köhnen K, Scheler F, Sveinbjörnsson K, Zimmermann L, Piot M, Yang F, Li B, Warby J, Musiienko A, Menzel D, Lang F, Keßler S, Levine L, Mantione D, Al-Ashouri A, Härtel M S, Xu K, Cruz A, Kurpiers J, Wagner P, Köbler H, Li J, Magomedov A, Mecerreyes D, Unger E, Abate A, Stolterfoht M, Stannowski B, Schlatmann R, Korte L, Albrecht S 2023 Science 381 63Google Scholar
[53] Liu J, Bastiani M D, Aydin E, Harrison G T, Gao Y, Pradhan R R, Eswaran M K, Mandal M, Yan W, Seitkhan A, Babics M, Subbiah A S, Ugur E, Xu F, Xu L, Wang M, Rehman A, Razzaq A, Kang J, Azmi R, Said A A, Isikgor F H, Allen T G, Andrienko D, Schwingenschlögl U, Laquai F, De Wolf S 2022 Science 377 302Google Scholar
[54] Zheng J, Wang G, Duan W, Mahmud M A, Yi H, Xu C, Lambertz A, Bremner S, Ding K, Huang S, Ho-Baillie A W Y 2022 ACS Energy Lett. 7 3003Google Scholar
[55] Dagar J, Fenske M, Al-Ashouri A, Schultz C, Li B, Köbler H, Munir R, Parmasivam G, Li J, Levine I, Merdasa A, Kegelmann L, Näsström H, Marquez J A, Unold T, Többens D M, Schlatmann R, Stegemann B, Abate A, Albrecht S, Unger E 2021 ACS Appl. Mater. Interfaces 13 13022Google Scholar
[56] Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez J A, Vilches A B M, Kasparavicius E, Smith J A, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S 2020 Science 370 1300Google Scholar
[57] Zhao Y, Heumueller T, Zhang J, Luo J, Kasian O, Langner S, Kupfer C, Liu B, Zhong Y, Elia J, Osvet A, Wu J, Liu C, Wan Z, Jia C, Li N, Hauch J, Brabec C J 2021 Nat. Energy 7 144Google Scholar
[58] Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G 2017 Sci. Rep. 7 44629Google Scholar
[59] Li Z, Sun X, Zheng X, Li B, Gao D, Zhang S, Wu X, Li S, Gong J, Luther J M, Li Z, Zhu Z 2023 Science 382 284Google Scholar
[60] Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen Z G, Du Y, Wang L, Huang J 2019 ACS Energy Lett. 4 1231Google Scholar
[61] Chang Q, Bao D, Chen B, Hu H, Chen X, Sun H, Lam Y M, Zhu J X, Zhao D, Chia E E M 2022 Commun. Phys. 5 187Google Scholar
[62] Peng W, Mao K, Cai F, Meng H, Zhu Z, Li T, Yuan S, Xu Z, Feng X, Xu J, Michael D. McGehee, Xu J 2023 Science 379 683Google Scholar
[63] Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J 2019 Sci. Adv. 5 8925Google Scholar
[64] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H 2020 Science 367 1135Google Scholar
[65] Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q, Han Q, Zhang Y, Han L 2022 Sci. Chin. Chem. 65 1321Google Scholar
[66] Ji X, Bi L, Fu Q, Li B, Wang J, Jeong S Y, Feng K, Ma S, Liao Q, Lin F R, Woo H Y, Lu L, Jen A K Y, Guo X 2023 Adv. Mater. 35 2303665Google Scholar
[67] Isikgor F H, Furlan F, Liu J, Ugur E, Eswaran M K, Subbiah A S, Yengel E, De Bastiani M, Harrison G T, Zhumagali S, Howells C T, Aydin E, Wang M, Gasparini N, Allen T G, Rehman A u, Van Kerschaver E, Baran D, McCulloch I, Anthopoulos T D, Schwingenschlögl U, Laquai F, De Wolf S 2021 Joule 5 1566Google Scholar
[68] Dou J, Ma Y, Niu X, Zhou W, Wei X, Dou J, Cui Z, Song Q, Song T, Zhou H, Zhu C, Bai Y, Chen Q 2024 J. Energy Chem. 88 64Google Scholar
[69] Duong T, Pham H, Kho T C, Phang P, Fong K C, Yan D, Yin Y, Peng J, Mahmud M A, Gharibzadeh S, Nejand B A, Hossain I M, Khan M R, Mozaffari N, Wu Y, Shen H, Zheng J, Mai H, Liang W, Samundsett C, Stocks M, McIntosh K, Andersson G G, Lemmer U, Richards B S, Paetzold U W, Ho-Ballie A, Liu Y, Macdonald D, Blakers A, Wong-Leung J, White T, Weber K, Catchpole K 2020 Adv. Energy Mater. 10 1903553Google Scholar
[70] Zhu L F, Xu Y Z, Zhang P P, Shi J J, Zhao Y H, Zhang H Y, Wu J H, Luo Y H, Li D M, Meng Q B 2017 J. Mater. Chem. A 5 20874Google Scholar
[71] Liu X, Chen Z L, Wang H, Zhang W Q, Dong H, Wang P X, Shao Y C 2024 Chin. Phys. B 33 048101Google Scholar
[72] De Bastiani M, Jalmood R, Liu J, Ossig C, Vlk A, Vegso K, Babics M, Isikgor F H, Selvin A S, Azmi R, Ugur E, Banerjee S, Mirabelli A J, Aydin E, Allen T G, Ur Rehman A, Van Kerschaver E, Siffalovic P, Stuckelberger M E, Ledinsky M, De Wolf S 2022 Adv. Funct. Mater. 33 2205557Google Scholar
[73] Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar
[74] Ghannam H, Bazin C, Chahboun A, Turmine M 2018 CrystEngComm 20 6618Google Scholar
[75] Fu F, Feurer T, Weiss Thomas P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari Ayodhya N 2016 Nat. Energy 2 16190Google Scholar
[76] Aydin E, Altinkaya C, Smirnov Y, Yaqin M A, Zanoni K P S, Paliwal A, Firdaus Y, Allen T G, Anthopoulos T D, Bolink H J, Morales-Masis M, De Wolf S 2021 Matter 4 3549Google Scholar
[77] Aydin E, De Bastiani M, Yang X, Sajjad M, Aljamaan F, Smirnov Y, Hedhili M N, Liu W, Allen T G, Xu L, Van Kerschaver E, Morales–Masis M, Schwingenschlögl U, De Wolf S 2019 Adv. Funct. Mater. 29 1901741Google Scholar
[78] Wahl T, Hanisch J, Meier S, Schultes M, Ahlswede E 2018 Org. Electron. 54 48Google Scholar
[79] Werner J, Dubuis G, Walter A, Löper P, Moon S J, Nicolay S, Morales-Masis M, De Wolf S, Niesen B, Ballif C 2015 Sol. Energy Mater. Sol. Cells 141 407Google Scholar
[80] Liu K, Chen B, Yu Z J, Wu Y, Huang Z, Jia X, Li C, Spronk D, Wang Z, Wang Z, Qu S, Holman Z C, Huang J 2022 J. Mater. Chem. A 10 1343Google Scholar
[81] Härtel M, Li B, Mariotti S, Wagner P, Ruske F, Albrecht S, Szyszka B 2023 Sol. Energy Mater. Sol. Cells 252 112180Google Scholar
[82] Tockhorn P, Sutter J, Cruz A, Wagner P, Jäger K, Yoo D, Lang F, Grischek M, Li B, Li J, Shargaieva O, Unger E, Al-Ashouri A, Köhnen E, Stolterfoht M, Neher D, Schlatmann R, Rech B, Stannowski B, Albrecht S, Becker C 2022 Nat. Nanotechnol. 17 1214Google Scholar
[83] Yamamoto K, Mishima R, Uzu H, Adachi D 2023 Jpn. J. Appl. Phys. 62 Sk1021Google Scholar
[84] Chapa M, Alexandre M F, Mendes M J, Águas H, Fortunato E, Martins R 2019 ACS Appl. Energy Mater. 2 3979Google Scholar
[85] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar
[86] Battaglia C, Cuevas A, De Wolf S 2016 Energy Environ. Sci. 9 1552Google Scholar
[87] Eugene A. Irene R G 1987 Appl. Surf. Sci. 30 1Google Scholar
[88] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar
Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar
[89] De Bastiani M, Subbiah A S, Babics M, Ugur E, Xu L, Liu J, Allen T G, Aydin E, De Wolf S 2022 Joule 6 1431Google Scholar
[90] De Rose A, Erath D, Nikitina V, Schube J, Güldali D, Minat Ä, Rößler T, Richter A, Kirner S, Kraft A, Lorenz A 2023 Sol. Energy Mater. Sol. Cells 261 112515Google Scholar
[91] Chu Q Q, Sun Z, Wang D, Cheng B, Wang H, Wong C P, Fang B 2023 Matter 6 3838Google Scholar
[92] Shi L, Bucknall M P, Young T L, Zhang M, Hu L, Bing J, Lee D S, Kim J, Wu T, Takamure N, McKenzie D R, Huang S, Green M A, Ho-Baillie A W Y 2020 Science 368 1328Google Scholar
计量
- 文章访问数: 5580
- PDF下载量: 289
- 被引次数: 0