搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能

刘文全 朝克夫 武文杰 包富泉 周炳卿

引用本文:
Citation:

CaAlSiN3:Eu2+红色荧光粉的常压氮化制备及发光性能

刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿

CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties

Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing
PDF
导出引用
  • 本文采用纳米EuB6和Eu2O3粉末为激活剂原料,提出了一步法和两步法,在常压条件下制备获得了CaAlSiN3:Eu2+红色荧光粉.对不同掺杂Eu浓度(2%10%)的样品进行了晶体结构、形貌、发光性能的分析研究.根据能谱与X射线衍射图谱(XRD)分析可知,两步法合成的样品随Eu浓度的增加晶胞体积会逐渐增大,且样品中B的含量增加;而一步法合成的样品随Eu浓度增加晶胞体积先增大后减小,且B含量相对上面的样品含量较少,O含量却较大.另外,在460 nm蓝光激发下,两步法合成的样品(纳米EuB6掺杂)的发射最强峰在652680 nm范围,而一步法合成的样品(纳米Eu2O3掺杂)的发射最强峰只在630637 nm范围,且前者的荧光相对强度都强于后者.结合XRD以及荧光光谱数据可以认为两种常压氮化制备方法都会让B元素引入到基质中,B的引入不但降低基质中O的含量,而且改变Eu2+离子的晶体场环境从而调节CaAlSiN3:Eu2+荧光粉的发光峰位.结合绿光发射荧光粉和纳米EuB6掺杂的Ca0.94AlSiN3:0.06Eu2+荧光粉在蓝光芯片激发下可以获得色温在3364 K,显色指数可以达到91的暖白发光二极管器件.本实验采用的方法简单,避免使用昂贵复杂的气压烧结设备以及还原性气体烧结设备,有望实现工业化应用以及降低生产成本.
    In this paper, we propose one-step and two-step process under atmospheric pressure condition for synthesizing the CaAlSiN3:Eu2+ red phosphors by using nano-sized EuB6 and Eu2O3 as raw doping and activator materials. Moreover, the crystal structures, morphologies and luminescence properties of different-doped-Eu-concentration (2%-10%) samples are characterized in detail. According to energy dispersive spectrometer and X-ray diffraction (XRD) results, the cell volume and B content will gradually increase with the increase of the Eu concentration (2%-10%) for the sample prepared by two-step process. In contrast, the cell volume decreases with increasing the Eu concentration for the one-step prepared sample. Meanwhile, B content in the sample is less than that in the sample mentioned above and O content becomes larger. In addition, under the 460-nm blue light excitation, the two-step synthesized samples (nano EuB6 doped) has the highest emission peak in the 652-680 nm range, however, the sample by one-step synthesis (nano Eu2O3 doped) has strong emission peak only in the 630-637 nm range. Moreover, the intensity of fluorescence of the former one is stronger than that of the latter one. Both XRD and fluorescence spectra show that boron element can be introduced into the matrix by using two-step methods under atmospheric nitrogen. The introduction of boron not only reduces the oxygen content in the matrix but also changes the crystal field around Eu ions to adjust CaAlSiN3:Eu2+ phosphor luminescence peak position. Combining XRD and fluorescence spectral analysis, it is believed that boron element is introduced into the host by the two preparation methods of atmospheric nitrogen. The introduction of boron not only reduces the oxygen content in the matrix but also changes the crystal field environment of Eu2+ ions, and thus adjusting the luminescence peak position of Ca0.94AlSiN3:Eu2+ phosphor. Blue LED excitation of combined green-emitting phosphor and Ca0.94AlSiN3:0.06Eu2+ phosphor doped with nano EuB6 can yield white LED device with a color rendering index of 91 at a corresponding color temperature of 3364 K. This work has adopted a simple method to avoid expensive and complex pressure sintering equipment, and also reduces gas sintering equipment. Therefore, it is has a good prospective in industrial application and reducing the production cost.
      通信作者: 朝克夫, phyerick@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51262022)、内蒙古自治区科技计划(2015年度)和内蒙古自治区科技创新引导奖励基金(2016年度)资助的课题.
      Corresponding author: Chao Ke-Fu, phyerick@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51262022), the Inner Mongolia Autonomous Region, China (2015), and the Inner Mongolia Autonomous Region Science and Technology Innovation Award Fund, China (2016).
    [1]

    Li X F, Budai D J, Liu F, Howe J Y, Zhang J H, Wang X J, Gu Z J, Sun C J, Richard S M, Pan Z W 2013 Light:Sci. Appl. 2 1

    [2]

    Oh J H, Yang S J, Do Y R 2014 Light:Sci. Appl. 3 1

    [3]

    Xie R J, Hirosaki N, Li YQ, Takeda T 2010 Materials 6 3777

    [4]

    Yu Y, Liu Z J, Chen Q Q, Dai N L, Li J Y, Yang L Y 2013 Acta Phys. Sin. 62 017804 (in Chinese)[余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云2013物理学报62 017804]

    [5]

    Zhou R D, Huang X F, Qi Z J, Huang W G 2014 Acta Phys. Sin. 63 197801 (in Chinese)[周仁迪, 黄雪飞, 齐智坚, 黄维刚2014物理学报63 197801]

    [6]

    Li H L, Xie R J, Hirosaki N, Takeda T, Zhou G H 2009 Int. J. Appl. Ceram. Technol. 6 459

    [7]

    Xie R J, Hintzen H T 2013 J. Am. Ceram. Soc. 96 665

    [8]

    Suehiro T, Xie R J, Hirosaki N 2013 Ind. Eng. Chem. Res. 52 7453

    [9]

    Wang Q Y, Yan D, Shao Q Y, Teng X M, Jiang J Q 2016 Mater. Des. 95 618

    [10]

    Zeuner M, Schmidt P J, Schnick W 2009 Chem. Mater. 21 2467

    [11]

    Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N 2007 Chem. Mater. 19 4592

    [12]

    Kim H S, Machida K, Horikawa T, Hanzawa H 2015 J. Alloys Comp. 633 97

    [13]

    Li S X, Peng X, Liu X J, Huang Z R 2014 Opt. Mater. 38 242

    [14]

    Li J W, Watanabe T, Sakamoto N, Wada H S, Setoyama T, Yoshimura M 2008 Chem. Mater. 20 2095

    [15]

    Suehiro T, Hirosaki N, Xie R J, Sato T 2009 Appl. Phys. Lett. 95 1903

    [16]

    Shioi K, Michiue Y, Hirosaki N, Xie R J, Takeda T, Matsushita Y, Tanaka M, Li Y Q 2011 J. Alloys Comp. 509 332

    [17]

    Jiang J, Bian J, Li L M 2007 Chem. J. Chim. Univ. 28 2167 (in Chinese)[姜骏, 卞江, 黎乐民2007高等化学学报28 2167]

    [18]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Comp. 617 235

    [19]

    Zhang Z J, ten Kate O M, Delsing A C A, Stevens M J H, Zhao J T, Notten P H L, Dorenbos P, Hintzen H T 2012 J. Mater. Chem. 45 23871

    [20]

    Wang T, Yang J J, Mo Y, Bian L, Song Z, Liu Q L 2013 J. Lumin. 137 173

  • [1]

    Li X F, Budai D J, Liu F, Howe J Y, Zhang J H, Wang X J, Gu Z J, Sun C J, Richard S M, Pan Z W 2013 Light:Sci. Appl. 2 1

    [2]

    Oh J H, Yang S J, Do Y R 2014 Light:Sci. Appl. 3 1

    [3]

    Xie R J, Hirosaki N, Li YQ, Takeda T 2010 Materials 6 3777

    [4]

    Yu Y, Liu Z J, Chen Q Q, Dai N L, Li J Y, Yang L Y 2013 Acta Phys. Sin. 62 017804 (in Chinese)[余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云2013物理学报62 017804]

    [5]

    Zhou R D, Huang X F, Qi Z J, Huang W G 2014 Acta Phys. Sin. 63 197801 (in Chinese)[周仁迪, 黄雪飞, 齐智坚, 黄维刚2014物理学报63 197801]

    [6]

    Li H L, Xie R J, Hirosaki N, Takeda T, Zhou G H 2009 Int. J. Appl. Ceram. Technol. 6 459

    [7]

    Xie R J, Hintzen H T 2013 J. Am. Ceram. Soc. 96 665

    [8]

    Suehiro T, Xie R J, Hirosaki N 2013 Ind. Eng. Chem. Res. 52 7453

    [9]

    Wang Q Y, Yan D, Shao Q Y, Teng X M, Jiang J Q 2016 Mater. Des. 95 618

    [10]

    Zeuner M, Schmidt P J, Schnick W 2009 Chem. Mater. 21 2467

    [11]

    Piao X, Machida K, Horikawa T, Hanzawa H, Shimomura Y, Kijima N 2007 Chem. Mater. 19 4592

    [12]

    Kim H S, Machida K, Horikawa T, Hanzawa H 2015 J. Alloys Comp. 633 97

    [13]

    Li S X, Peng X, Liu X J, Huang Z R 2014 Opt. Mater. 38 242

    [14]

    Li J W, Watanabe T, Sakamoto N, Wada H S, Setoyama T, Yoshimura M 2008 Chem. Mater. 20 2095

    [15]

    Suehiro T, Hirosaki N, Xie R J, Sato T 2009 Appl. Phys. Lett. 95 1903

    [16]

    Shioi K, Michiue Y, Hirosaki N, Xie R J, Takeda T, Matsushita Y, Tanaka M, Li Y Q 2011 J. Alloys Comp. 509 332

    [17]

    Jiang J, Bian J, Li L M 2007 Chem. J. Chim. Univ. 28 2167 (in Chinese)[姜骏, 卞江, 黎乐民2007高等化学学报28 2167]

    [18]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Comp. 617 235

    [19]

    Zhang Z J, ten Kate O M, Delsing A C A, Stevens M J H, Zhao J T, Notten P H L, Dorenbos P, Hintzen H T 2012 J. Mater. Chem. 45 23871

    [20]

    Wang T, Yang J J, Mo Y, Bian L, Song Z, Liu Q L 2013 J. Lumin. 137 173

计量
  • 文章访问数:  5880
  • PDF下载量:  390
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-31
  • 修回日期:  2016-07-27
  • 刊出日期:  2016-10-05

/

返回文章
返回