搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌系统的SM4密钥扩展算法

王传福 丁群

引用本文:
Citation:

基于混沌系统的SM4密钥扩展算法

王传福, 丁群

SM4 key scheme algorithm based on chaotic system

Wang Chuan-Fu, Ding Qun
PDF
导出引用
  • 分组密码是一类广泛使用的加密方法.在网络数据加密体系中,为提高信息的安全性,需要保证初始密钥具有足够大的密钥空间.为克服量子计算机对短密钥的威胁,一种基于混沌映射的新型密钥扩展算法被提出.该算法将混沌映射融入到原SM4密钥扩展算法中,有效增大了密钥空间,提高了破译难度.
    Block cipher is a widely used encryption method. In order to improve the security of information in the network data encryption systems, the initial key should be guaranteed to be large enough. In order to overcome the threat of quantum computer to short initial keys, a key scheme based on chaotic map is proposed. The chaotic map is introduced into the original SM4 key scheme, which effectively increases the initial key space and greatly improves the resistance to key scheme attacks.#br#Due to the limited logic resources in hardware implementation, a logistic map is chosen as a chaotic system in this paper. Although the logistic map has many excellent properties of chaotic system, such as initial value sensitivity, randomness, ergodic, etc, there are still a lot of problems that we need to pay attention to. The parameter μ is the system parameter in the logistic map. The value of μ controls chaotic characteristics in the logistic map. When μ is equal to 4, the dynamic characteristics of logistic map are best. The values of data transmitted in the network are all quantified as 0 and 1. In order to implement the logistic map in a digital circuit, the digital quantization is needed. The bit sequence design quantization is very simple and saves resource consumption. Compared with other quantization methods, bit sequence design quantization can be implemented in hardware parallelly. United States National Institute of Standards and Technology launched the test program package to test the random numbers. The test program package includes frequency detection, block frequency detection, run test, etc. Those tests are used to detect the randomness in binary sequence of arbitrary length. The test program package proves that the sequence generated by the logistic map has a great randomness characteristic. After the security analysis of logistic map, the hardware implementation of logistic map is carried out in this paper. Based on the theoretical analysis and hardware implementation in the logistic map, a new SM4 key scheme combined with the logistic map is proposed. The proposed key scheme has less hardware resource consumption, larger key space and higher security than other key schemes combined with chaotic systems. The output of key scheme in this paper is tested by the test program package. The results show that the random number produced by new key scheme is larger. In the end, a key scheme attack is introduced in this paper. It is proved that the new key scheme in this paper can effectively resist existing key scheme attacks.
      通信作者: 丁群, qunding@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:61471158)和高等学校博士学科点专项科研基金(批准号:20132301110004)资助的课题.
      Corresponding author: Ding Qun, qunding@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471158) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20132301110004).
    [1]

    Shen C X, Zhamg H G, Feng D G, Chao Z F, Huang J W 2007 Sci. China Ser. E 37 129 (in Chinese)[沈昌祥, 张焕国, 冯登国, 曹珍富, 黄继武2007中国科学37 129]

    [2]

    Wu G C, Baleanu D 2014 Signal Process. 102 96

    [3]

    Wang E F, Wang Z, Jing M A, Ding Q 2011 J. Net. 6 1025

    [4]

    Liu H, Kadir A 2015 Signal Process. 113 104

    [5]

    Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE T. Circuits-I. 49 163

    [6]

    Quan A J, Jiang G P, Zuo T, Chen T 2005 J. Nanjing University of Posts and Telecommunications 25 80 (in Chinese)[权安静, 蒋国平, 左涛, 陈婷2005南京邮电大学学报25 80]

    [7]

    Zhao R, Wang Q S, Wen H P 2006 Network Security Technology & Application 3 69 (in Chinese)[胡祥义, 刘彤2006网络安全技术与应用3 69]

    [8]

    Jiang J Y, Liu T, Hu X Y 2008 Network Security Technology & Application 9 92 (in Chinese)[蒋继娅, 刘彤, 胡祥义2008网络安全技术与应用9 92]

    [9]

    Zhou S Y, P M M, Xiao X H 2011 Microelectronics & Computer 28 86 (in Chinese)[周术洋, 彭蔓蔓, 肖小欢2011微电子学与计算机28 86]

    [10]

    Pan J, Qi N, Xue B B, Ding Q 2012 Acta Phys. Sin. 61 180504 (in Chinese)[潘晶, 齐娜, 薛兵兵, 丁群2012物理学报61 180504]

    [11]

    Zhao G, Zheng D L, Dong J Y 2001 J. University of Science and Technology Beijing 23 173 (in Chinese)[赵耿, 郑德玲, 董冀媛2001北京科技大学学报23 173]

    [12]

    Dong B H, Zhou J Y, Huang J Y 2009 Information Security and Communications Privacy 8 327 (in Chinese)[董斌辉, 周健勇, 黄金源2009信息安全与通信保密8 327]

    [13]

    Cermak J, Kisela T, Nechvatal L 2013 Appl. Math. Comput. 219 7012

    [14]

    Ding Q, Wang L 2011 Chinese J. Scientific Instrument 32 231 6 (in Chinese)[丁群, 王路2011仪器仪表学报231 6]

    [15]

    Yu N, Ding Q, Chen H 2007 J. Communs. 28 73 (in Chinese)[于娜, 丁群, 陈红2007通信学报28 73]

    [16]

    Zhang Y H, Sun X M, Wang B W 2016 China Commun. 13 16

    [17]

    Gu B, Sheng V S 2016 IEEE T. Neur. Net. Lear. 1 1

    [18]

    Li W, Wu D G 2008 J. Communs. 29 135 (in Chinese)[李玮, 谷大武2008通信学报29 135]

    [19]

    Sheng L Y, Wen J, Cao L L, Xiao Y Y 2007 Acta Phys. Sin. 56 78 (in Chinese)[盛利元, 闻姜, 曹莉凌, 肖燕予2007物理学报56 78]

    [20]

    Fu Z, Ren K, Shu J, Sun X 2016 IEEE T. Parall. Distr. 27 2546

    [21]

    Fu Z J, Wu X L, Guan C W, Sun X M, Ren K 2016 IEEE T. Inf. Foren. Sec. 11 2706

  • [1]

    Shen C X, Zhamg H G, Feng D G, Chao Z F, Huang J W 2007 Sci. China Ser. E 37 129 (in Chinese)[沈昌祥, 张焕国, 冯登国, 曹珍富, 黄继武2007中国科学37 129]

    [2]

    Wu G C, Baleanu D 2014 Signal Process. 102 96

    [3]

    Wang E F, Wang Z, Jing M A, Ding Q 2011 J. Net. 6 1025

    [4]

    Liu H, Kadir A 2015 Signal Process. 113 104

    [5]

    Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE T. Circuits-I. 49 163

    [6]

    Quan A J, Jiang G P, Zuo T, Chen T 2005 J. Nanjing University of Posts and Telecommunications 25 80 (in Chinese)[权安静, 蒋国平, 左涛, 陈婷2005南京邮电大学学报25 80]

    [7]

    Zhao R, Wang Q S, Wen H P 2006 Network Security Technology & Application 3 69 (in Chinese)[胡祥义, 刘彤2006网络安全技术与应用3 69]

    [8]

    Jiang J Y, Liu T, Hu X Y 2008 Network Security Technology & Application 9 92 (in Chinese)[蒋继娅, 刘彤, 胡祥义2008网络安全技术与应用9 92]

    [9]

    Zhou S Y, P M M, Xiao X H 2011 Microelectronics & Computer 28 86 (in Chinese)[周术洋, 彭蔓蔓, 肖小欢2011微电子学与计算机28 86]

    [10]

    Pan J, Qi N, Xue B B, Ding Q 2012 Acta Phys. Sin. 61 180504 (in Chinese)[潘晶, 齐娜, 薛兵兵, 丁群2012物理学报61 180504]

    [11]

    Zhao G, Zheng D L, Dong J Y 2001 J. University of Science and Technology Beijing 23 173 (in Chinese)[赵耿, 郑德玲, 董冀媛2001北京科技大学学报23 173]

    [12]

    Dong B H, Zhou J Y, Huang J Y 2009 Information Security and Communications Privacy 8 327 (in Chinese)[董斌辉, 周健勇, 黄金源2009信息安全与通信保密8 327]

    [13]

    Cermak J, Kisela T, Nechvatal L 2013 Appl. Math. Comput. 219 7012

    [14]

    Ding Q, Wang L 2011 Chinese J. Scientific Instrument 32 231 6 (in Chinese)[丁群, 王路2011仪器仪表学报231 6]

    [15]

    Yu N, Ding Q, Chen H 2007 J. Communs. 28 73 (in Chinese)[于娜, 丁群, 陈红2007通信学报28 73]

    [16]

    Zhang Y H, Sun X M, Wang B W 2016 China Commun. 13 16

    [17]

    Gu B, Sheng V S 2016 IEEE T. Neur. Net. Lear. 1 1

    [18]

    Li W, Wu D G 2008 J. Communs. 29 135 (in Chinese)[李玮, 谷大武2008通信学报29 135]

    [19]

    Sheng L Y, Wen J, Cao L L, Xiao Y Y 2007 Acta Phys. Sin. 56 78 (in Chinese)[盛利元, 闻姜, 曹莉凌, 肖燕予2007物理学报56 78]

    [20]

    Fu Z, Ren K, Shu J, Sun X 2016 IEEE T. Parall. Distr. 27 2546

    [21]

    Fu Z J, Wu X L, Guan C W, Sun X M, Ren K 2016 IEEE T. Inf. Foren. Sec. 11 2706

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 全旭, 邱达, 孙智鹏, 张贵重, 刘嵩. 一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现. 物理学报, 2023, 72(19): 190502. doi: 10.7498/aps.72.20230795
    [3] 张贵重, 全旭, 刘嵩. 一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现. 物理学报, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423
    [4] 王梦蛟, 吴中堂, 冯久超. 一种参数优化的混沌信号自适应去噪算法. 物理学报, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [5] 王跃钢, 文超斌, 左朝阳, 杨家胜, 郭志斌. 自适应混沌蚁群径向分析算法求解重力辅助导航匹配问题. 物理学报, 2014, 63(8): 089101. doi: 10.7498/aps.63.089101
    [6] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [7] 梁君生, 武媛, 王安帮, 王云才. 利用频谱仪提取双反馈混沌半导体激光器的外腔长度密钥. 物理学报, 2012, 61(3): 034211. doi: 10.7498/aps.61.034211
    [8] 柴争义, 郑丽萍, 朱思峰. 混沌免疫算法求解认知无线电网络资源分配问题. 物理学报, 2012, 61(11): 118801. doi: 10.7498/aps.61.118801
    [9] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题. 物理学报, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [10] 刘 强, 方锦清, 赵耿, 李永. 基于FPGA技术的混沌加密系统研究. 物理学报, 2012, 61(13): 130508. doi: 10.7498/aps.61.130508
    [11] 郑皓洲, 胡进峰, 刘立东, 何子述. 快速混沌同步算法研究. 物理学报, 2011, 60(11): 110507. doi: 10.7498/aps.60.110507
    [12] 张巍巍, 王京, 王慧, 赵云涛. 混沌系统的变论域模糊控制算法研究. 物理学报, 2011, 60(1): 010511. doi: 10.7498/aps.60.010511
    [13] 周武杰, 禹思敏. 基于现场可编程门阵列技术的混沌数字通信系统——设计与实现. 物理学报, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [14] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [15] 王继志, 王美琴, 王英龙. 一种基于混沌的带密钥Hash函数的碰撞问题及分析. 物理学报, 2008, 57(5): 2737-2742. doi: 10.7498/aps.57.2737
    [16] 徐淑奖, 王继志. 一类改进的混沌迭代加密算法. 物理学报, 2008, 57(1): 37-41. doi: 10.7498/aps.57.37
    [17] 周武杰, 禹思敏. 基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现. 物理学报, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
    [18] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法. 物理学报, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [19] 和红杰, 张家树. 基于混沌的自嵌入安全水印算法. 物理学报, 2007, 56(6): 3092-3100. doi: 10.7498/aps.56.3092
    [20] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
计量
  • 文章访问数:  7240
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-21
  • 修回日期:  2016-11-06
  • 刊出日期:  2017-01-20

/

返回文章
返回