搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现

全旭 邱达 孙智鹏 张贵重 刘嵩

引用本文:
Citation:

一个具有共存吸引子的四阶混沌系统动力学分析及FPGA实现

全旭, 邱达, 孙智鹏, 张贵重, 刘嵩

Dynamic analysis and FPGA implementation of a fourth-order chaotic system with coexisting attractor

Quan Xu, Qiu Da, Sun Zhi-Peng, Zhang Gui-Zhong, Liu Song
PDF
HTML
导出引用
  • 为进一步探索共存吸引子中复杂的动力学行为, 构建了一个具有4种类型共存吸引子的四阶混沌系统, 该系统具有4个不稳定的平衡点. 采用相轨迹图、时域波形图、庞加莱映射、Lyapunov指数谱和分岔图等方法对新系统的动力学行为进行分析. 实验结果表明: 随着参数的变化, 系统表现出稳定点、倍周期分岔、共存分岔模式、混沌危机等丰富的动力学行为. 当改变系统参数和忆阻参数时, 发现系统具有不同类型的共存吸引子, 例如: 两个周期吸引子共存、两个单涡卷混沌吸引子共存、两个双涡卷混沌吸引子共存、两个点吸引子共存. 特别地, 该系统还存在共存吸引子的旋转现象. 最后设计了一个非线性反馈控制器, 可使新系统在短时间内实现混沌同步. 采用现场可编程门阵列 (field-programmable gate array, FPGA)硬件平台捕捉到的相图与数值仿真结果保持一致, 证明了该系统的可实现性.
    To further explore the complex dynamical behaviors in coexisting attractors, a fourth-order chaotic system with four types of coexisting attractors and four unstable equilibrium points is constructed in this paper. The dynamic behavior of the new system is analyzed by means of phase trajectory diagram, time domain waveform diagram, Poincaré map, Lyapunov exponent spectrum and bifurcation diagram. The experimental results show that as the parameters change, the system exhibits rich dynamic behaviors such as stable points, period-doubling bifurcations, coexisting bifurcation modes, and chaotic crises. When the system parameters and memristive parameters change, it is found that the system has different types of coexisting attractors, such as the coexistence of two periodic attractors, the coexistence of two single-scroll chaotic attractors, the coexistence of two double-scroll chaotic attractors, the coexistence of two point attractors. In particular, the system also has the rotation phenomenon of coexisting attractors. Finally, a nonlinear feedback controller is designed, which can make the new system achieve chaos synchronization in a short time. The phase diagram captured by the field-programmable gate array (FPGA) hardware platform is consistent with the numerical simulation results, which proves the feasibility of the system.
      通信作者: 刘嵩, liusong@hbmzu.edu.cn
    • 基金项目: 恩施州科技支撑计划 (批准号: D20220015)资助的课题.
      Corresponding author: Liu Song, liusong@hbmzu.edu.cn
    • Funds: Project supported by the Enshi State Science and Technology Support Plan Project, China (Grant No. D20220015).
    [1]

    Tucker W 1999 Comptes Rendus de l'Académie des Sciences-Series I-Mathematics 328 1197

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465Google Scholar

    [3]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659Google Scholar

    [4]

    Bao B C, Liu Z, Xu J P 2009 J. Syst. Eng. Electron 20 1179Google Scholar

    [5]

    Lai Q, Wang Z L, Kamdem P D K 2022 Mod Phys. Lett. B 36 1Google Scholar

    [6]

    Liu M T, Yu W X, Wang J N, Chen Y, Bian Y Y 2022 Circuit World 48 1Google Scholar

    [7]

    刘嵩, 韦亚萍, 刘静漪, 张国平 2020 华中师范大学学报 (自然科学版) 54 36Google Scholar

    Liu S, Wei Y P, Liu J Y, Zhang G P 2020 J. Cent. Chin. Normal Univ. (Nat. Sci.) 54 36Google Scholar

    [8]

    庄志本, 李军, 刘静漪, 陈世强 2020 物理学报 69 50Google Scholar

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 50Google Scholar

    [9]

    吴庆庆, 郑雅婷, 李涛 2014 中国科技论文 9 130Google Scholar

    Wu Q Q, Zheng Y T, Li T 2014 Science Paper Online 9 130Google Scholar

    [10]

    颜闽秀, 林建峰, 谢俊红 2021 南京邮电大学学报(自然科学版) 41 66

    Yan M X, Lin J F, Xie J H 2021 J. Nanjing Youdian Univ. (Nat. Sci.) 41 66

    [11]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [12]

    Strukov D B, Snider G S, Stewart D R, Stanley W R 2008 Nature 453 80Google Scholar

    [13]

    Wang M J, Deng Y, Liao X H, Li Z J, Ma M L, Zeng Y C 2019 Int. J. Nonlin. Mech. 111 149Google Scholar

    [14]

    徐昌彪, 何颖辉, 吴霞, 莫运辉 2020 哈尔滨工业大学学报 52 92Google Scholar

    Xu C B, He Y H, Wu X, Mo Y H 2020 J. Harbin Eng. Univ. 52 92Google Scholar

    [15]

    Hu H Y, Cao Y H, Hao J, Li X J, Mou J 2022 Multimed. Tools Appl. 82 4343Google Scholar

    [16]

    Guo Z G, Wen J J, Mou J 2022 Mathematics 11 1

    [17]

    鲜永菊, 莫运辉, 徐昌彪, 吴霞, 何颖辉 2020 华南理工大学学报(自然科学版) 48 32Google Scholar

    Xian Y J, Mo Y H, Xu C B, Wu X, He Y H 2020 J. Huanan Ligong Univ. (Nat. Sci.) 48 32Google Scholar

    [18]

    王徐盱, 张宏昊, 赖强 2021 电子元件与材料 40 1208Google Scholar

    Wang X X, Zhang H H, Lai Q 2021 Electron. Components Mater. 40 1208Google Scholar

    [19]

    鲜永菊, 扶坤荣, 徐昌彪 2021 振动与冲击 40 15Google Scholar

    Xian Y J, Fu K R, Xu C B 2021 J. Vibr. Shock 40 15Google Scholar

    [20]

    李木子, 许荣今, 岳立娟 2021 东北师大学报(自然科学版) 53 120Google Scholar

    Li M Z, Xu R J, Yue L J 2021 J. Dongbei Shida Univ. (Nat. Sci.) 53 120Google Scholar

    [21]

    闵富红, 王珠林, 曹戈, 王恩荣 2018 电子学报 46 9Google Scholar

    Min F H, Wang Z L, Cao G, Wang E R 2018 Acta Electronica Sin. 46 9Google Scholar

    [22]

    Ma X J, Mou J, Li X, Banerjee S, Cao Y H, Wang J Y 2021 Chaos Solit. Frac. 152 111363Google Scholar

    [23]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. 57 264Google Scholar

    [24]

    Yu F, Liu L, Qian S, Li L X, Huang Y Y, Shi C Q, Cai S, Wu X M, Du S C, Wan Q Z 2020 Complexity 2020 1Google Scholar

    [25]

    李晓霞, 郑驰, 王雪, 曹樱子, 徐桂芝 2022 哈尔滨工业大学学报 69 163Google Scholar

    Li X X, Zheng C, Wang X, Cao Y Z, Xu G Z 2022 J. Harbin Eng. Univ. 69 163Google Scholar

    [26]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [27]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295Google Scholar

    [28]

    Yang Q G, Wei Z C, Chen G R 2010 Int. J. Bifur. Chao 20 1061Google Scholar

    [29]

    孙克辉, 汪艳, 刘璇 2013 电路与系统学报 18 500Google Scholar

    Sun K H, Wang Y, Liu X 2013 J. Circuits Syst. 18 500Google Scholar

    [30]

    陈志盛, 孙克辉, 张泰山 2005 物理学报 6 2580Google Scholar

    Chen Z S, Sun K H, Zhang T S 2005 Acta Phys. Sin. 6 2580Google Scholar

    [31]

    付景超, 张中华 2016 控制与决策 31 1707Google Scholar

    Fu J C, Zhang Z H 2016 Control Decision 31 1707Google Scholar

    [32]

    毛北行, 王东晓, 卜春霞 2012 华中师范大学学报(自然科学版) 46 297Google Scholar

    Mao B X, Wang D X, Bu C X 2012 J. Cent. Chin. Normal Univ. (Nat. Sci.) 46 297Google Scholar

  • 图 1  忆阻器的磁滞回线

    Fig. 1.  Hysteresis loop of memristor.

    图 2  混沌吸引子各平面相图 (a) x-y平面; (b) x-z平面; (c) y-z平面; (d) y-w平面

    Fig. 2.  Phase portraits of chaotic attractor: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) y-w plane.

    图 3  系统的时域波形图和庞加莱截面 (a)时域波形图; (b)在$ z = 0 $截面上的Poincaré截面

    Fig. 3.  Time domain waveforms and Poincaré cross section of the system: (a) Time domain waveforms; (b) Poincaré map on $ z = 0 $ plane

    图 4  随系统参数$ a $变化的混沌动力学 (a)分岔图; (b) Lyapunov指数谱

    Fig. 4.  Chaotic dynamics varying with system parameters $ a $: (a) Bifurcation diagram; (b) Lyapunov exponential spectra.

    图 5  $ a $的不同值在x-y平面的相位图 (a)周期1吸引子共存(a = 3); (b)周期2吸引子共存(a = 3.2); (c)单涡卷混沌吸引子共存(a = 34.93); (d)周期1吸引子共存 (a = 50)

    Fig. 5.  The phase diagram of different values in x-y plane: (a) Coexistence period 1 attractor coexistence (a = 3); (b) coexistence period 2 attractor coexistence (a = 3.2); (c) coexisting single scroll chaotic attractor (a = 34.93); (d) coexistence period 1 attractor coexistence (a = 50).

    图 6  随系统参数$ b $变化的混沌动力学 (a)分岔图; (b) Lyapunov指数谱

    Fig. 6.  Chaotic dynamics varying with system parameters $ b $: (a) Bifurcation diagram; (b) Lyapunov exponential spectrum.

    图 7  $ b $的不同值在x-y平面的相位图 (a) 周期1吸引子共存(b = 10); (b) 周期2吸引子共存(b = 20.5); (c) 双涡卷混沌吸引子共存(b = 62); (d) 单涡卷吸引子共存(b = 70)

    Fig. 7.  Phase diagram of different values of parameter $ b $ on x-y plane: (a) Coexisting period 1 attractor coexistence (b = 10); (b) coexisting period 2 attractor coexistence (b = 20.5); (c) coexisting double scroll chaotic attractor coexistence (b = 62); (d) coexisting single-scroll attractors coexistence (b = 70).

    图 8  参数ab的动力学地图

    Fig. 8.  Dynamic map of parameters a and b.

    图 9  随系统参数$ {a_1} $变化的混沌动力学 (a) 分岔图; (b) Lyapunov指数谱

    Fig. 9.  Chaotic dynamics varying with system parameters $ {a_1} $: (a) Bifurcation diagram; (b) Lyapunov exponential spectrum.

    图 10  不同$ {a_1} $值在x-y平面的相位图

    Fig. 10.  Phase diagram of different values of parameter $ {a_1} $ on x-y plane.

    图 11  混沌同步的误差收敛曲线 (a) $ {e_1} $; (b) $ {e_2} $; (c) $ {e_3} $; (d) $ {e_4} $

    Fig. 11.  Error convergence curve of chaotic synchronization: (a) $ {e_1} $; (b) $ {e_2} $; (c) $ {e_3} $; (d) $ {e_4} $.

    图 12  FPGA实现设备

    Fig. 12.  FPGA implementation equipment.

    图 13  FPGA硬件实现系统相图 (a) x-y平面; (b) x-z 平面; (c) y-z 平面; (d) y-w平面

    Fig. 13.  Realization of memristive chaotic attractor by FPGA hardware: (a) x-y plane; (b) x-z plane; (c) y-z plane; (d) y-w plane.

    表 1  不同$ {a_1} $值下的共存吸引子类型及图形编号

    Table 1.  Types and figure numbers of coexisting attractors under different $ {a_1} $ values.

    参数$ {a_1} $ 运动状态 图9
    –3.51 周期4 (a)
    –3.30 单涡卷混沌 (b)
    –3.23 单涡卷混沌 (c)
    –2.73 周期1 (d)
    –2.72 周期1 (e)
    –2.75 双涡卷混沌 (f)
    –2.38 周期2 (g)
    1.60 混沌 (h)
    3.01 稳定点 (i)
    下载: 导出CSV
  • [1]

    Tucker W 1999 Comptes Rendus de l'Académie des Sciences-Series I-Mathematics 328 1197

    [2]

    Chen G R, Ueta T 1999 Int. J. Bifur. Chaos 9 1465Google Scholar

    [3]

    Lü J H, Chen G R 2002 Int. J. Bifur. Chaos 12 659Google Scholar

    [4]

    Bao B C, Liu Z, Xu J P 2009 J. Syst. Eng. Electron 20 1179Google Scholar

    [5]

    Lai Q, Wang Z L, Kamdem P D K 2022 Mod Phys. Lett. B 36 1Google Scholar

    [6]

    Liu M T, Yu W X, Wang J N, Chen Y, Bian Y Y 2022 Circuit World 48 1Google Scholar

    [7]

    刘嵩, 韦亚萍, 刘静漪, 张国平 2020 华中师范大学学报 (自然科学版) 54 36Google Scholar

    Liu S, Wei Y P, Liu J Y, Zhang G P 2020 J. Cent. Chin. Normal Univ. (Nat. Sci.) 54 36Google Scholar

    [8]

    庄志本, 李军, 刘静漪, 陈世强 2020 物理学报 69 50Google Scholar

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 50Google Scholar

    [9]

    吴庆庆, 郑雅婷, 李涛 2014 中国科技论文 9 130Google Scholar

    Wu Q Q, Zheng Y T, Li T 2014 Science Paper Online 9 130Google Scholar

    [10]

    颜闽秀, 林建峰, 谢俊红 2021 南京邮电大学学报(自然科学版) 41 66

    Yan M X, Lin J F, Xie J H 2021 J. Nanjing Youdian Univ. (Nat. Sci.) 41 66

    [11]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507Google Scholar

    [12]

    Strukov D B, Snider G S, Stewart D R, Stanley W R 2008 Nature 453 80Google Scholar

    [13]

    Wang M J, Deng Y, Liao X H, Li Z J, Ma M L, Zeng Y C 2019 Int. J. Nonlin. Mech. 111 149Google Scholar

    [14]

    徐昌彪, 何颖辉, 吴霞, 莫运辉 2020 哈尔滨工业大学学报 52 92Google Scholar

    Xu C B, He Y H, Wu X, Mo Y H 2020 J. Harbin Eng. Univ. 52 92Google Scholar

    [15]

    Hu H Y, Cao Y H, Hao J, Li X J, Mou J 2022 Multimed. Tools Appl. 82 4343Google Scholar

    [16]

    Guo Z G, Wen J J, Mou J 2022 Mathematics 11 1

    [17]

    鲜永菊, 莫运辉, 徐昌彪, 吴霞, 何颖辉 2020 华南理工大学学报(自然科学版) 48 32Google Scholar

    Xian Y J, Mo Y H, Xu C B, Wu X, He Y H 2020 J. Huanan Ligong Univ. (Nat. Sci.) 48 32Google Scholar

    [18]

    王徐盱, 张宏昊, 赖强 2021 电子元件与材料 40 1208Google Scholar

    Wang X X, Zhang H H, Lai Q 2021 Electron. Components Mater. 40 1208Google Scholar

    [19]

    鲜永菊, 扶坤荣, 徐昌彪 2021 振动与冲击 40 15Google Scholar

    Xian Y J, Fu K R, Xu C B 2021 J. Vibr. Shock 40 15Google Scholar

    [20]

    李木子, 许荣今, 岳立娟 2021 东北师大学报(自然科学版) 53 120Google Scholar

    Li M Z, Xu R J, Yue L J 2021 J. Dongbei Shida Univ. (Nat. Sci.) 53 120Google Scholar

    [21]

    闵富红, 王珠林, 曹戈, 王恩荣 2018 电子学报 46 9Google Scholar

    Min F H, Wang Z L, Cao G, Wang E R 2018 Acta Electronica Sin. 46 9Google Scholar

    [22]

    Ma X J, Mou J, Li X, Banerjee S, Cao Y H, Wang J Y 2021 Chaos Solit. Frac. 152 111363Google Scholar

    [23]

    Bao H, Wang N, Bao B C, Chen M, Jin P P, Wang G Y 2018 Commun. Nonlinear Sci. 57 264Google Scholar

    [24]

    Yu F, Liu L, Qian S, Li L X, Huang Y Y, Shi C Q, Cai S, Wu X M, Du S C, Wan Q Z 2020 Complexity 2020 1Google Scholar

    [25]

    李晓霞, 郑驰, 王雪, 曹樱子, 徐桂芝 2022 哈尔滨工业大学学报 69 163Google Scholar

    Li X X, Zheng C, Wang X, Cao Y Z, Xu G Z 2022 J. Harbin Eng. Univ. 69 163Google Scholar

    [26]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [27]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295Google Scholar

    [28]

    Yang Q G, Wei Z C, Chen G R 2010 Int. J. Bifur. Chao 20 1061Google Scholar

    [29]

    孙克辉, 汪艳, 刘璇 2013 电路与系统学报 18 500Google Scholar

    Sun K H, Wang Y, Liu X 2013 J. Circuits Syst. 18 500Google Scholar

    [30]

    陈志盛, 孙克辉, 张泰山 2005 物理学报 6 2580Google Scholar

    Chen Z S, Sun K H, Zhang T S 2005 Acta Phys. Sin. 6 2580Google Scholar

    [31]

    付景超, 张中华 2016 控制与决策 31 1707Google Scholar

    Fu J C, Zhang Z H 2016 Control Decision 31 1707Google Scholar

    [32]

    毛北行, 王东晓, 卜春霞 2012 华中师范大学学报(自然科学版) 46 297Google Scholar

    Mao B X, Wang D X, Bu C X 2012 J. Cent. Chin. Normal Univ. (Nat. Sci.) 46 297Google Scholar

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案. 物理学报, 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 秦铭宏, 赖强, 吴永红. 具有无穷共存吸引子的简单忆阻混沌系统的分析与实现. 物理学报, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [3] 张贵重, 全旭, 刘嵩. 一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现. 物理学报, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423
    [4] 王传福, 丁群. 基于混沌系统的SM4密钥扩展算法. 物理学报, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
    [5] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [6] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [7] 艾星星, 孙克辉, 贺少波. 不同类型混沌吸引子的复合. 物理学报, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [8] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [9] 邵书义, 闵富红, 吴薛红, 张新国. 基于现场可编程逻辑门阵列的新型混沌系统实现. 物理学报, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [10] 潘晶, 齐娜, 薛兵兵, 丁群. 基于现场可编程门阵列的手机短信息混沌加密系统设计方案及硬件实现. 物理学报, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [11] 刘 强, 方锦清, 赵耿, 李永. 基于FPGA技术的混沌加密系统研究. 物理学报, 2012, 61(13): 130508. doi: 10.7498/aps.61.130508
    [12] 武花干, 包伯成, 刘中. 吸引子涡卷数量与分布的控制:系统设计及电路实现. 物理学报, 2011, 60(9): 090502. doi: 10.7498/aps.60.090502
    [13] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [14] 周武杰, 禹思敏. 基于现场可编程门阵列技术的混沌数字通信系统——设计与实现. 物理学报, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [15] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统. 物理学报, 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [16] 周武杰, 禹思敏. 基于IEEE-754标准和现场可编程门阵列技术的混沌产生器设计与实现. 物理学报, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
    [17] 杨东升, 张化光, 李爱平, 孟子怡. 基于模糊模型的不同结构的混沌系统同步. 物理学报, 2007, 56(6): 3121-3126. doi: 10.7498/aps.56.3121
    [18] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [19] 王杰智, 陈增强, 袁著祉. 一个新的混沌系统及其性质研究. 物理学报, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [20] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统. 物理学报, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
计量
  • 文章访问数:  3423
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回