搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光线庞加莱球法构建的结构光场及其传输特性研究

张书赫 邵梦 周金华

引用本文:
Citation:

光线庞加莱球法构建的结构光场及其传输特性研究

张书赫, 邵梦, 周金华

Structured beam designed by ray-optical Poincaré sphere method and its propagation properties

Zhang Shu-He, Shao Meng, Zhou Jin-Hua
PDF
导出引用
  • 结构光场在光信息传输、显微成像以及微粒俘获中有重要作用.本文基于光线庞加莱球法结合不同花瓣数的梅花曲线构建了一类结构光束.根据光线庞加莱球法可计算这类光束在束腰面上的光强与相位分布,以及光束内外焦散线的分布.这些焦散线的特征表明梅花形结构光束具有无衍射与自修复的特性.进一步采用角谱衍射法和光线追迹研究了这类光束在空间中的传输特性.当梅花花瓣数为0时,该光束退化为拉盖尔-高斯光束;当花瓣数为1时,内焦散线汇集到两点,使光束具有无衍射特性.通过光线庞加莱球法获得其光线在空间传播的轨迹,直观地展示了光束被遮挡后的自修复特性.此外,本文还展示了花瓣数为5的结构光束,其内焦散线为十角星结构,该光束同样具有自修复特性.通过修改梅花曲线参数或选择其他庞加莱球面曲线可以构造更加复杂的结构光场.
    Structured beam plays an important role in optical communication, microscopy and particle manipulations. Traditionally, structured beam can be obtained by solving Helmholtz wave equation. This method involves complex mathematical procedures, and the properties of solved light beam are obscure. It is worth noting that the structured beam can also be constructed by ray-optical Poincaré sphere method: this method is a rather intuitive and convenient for designing the structured beam with novel properties. This method also provides a ray-based way to study the propagation properties of structured beam. In this paper, the ray-optical Poincaré sphere method combined with plum-blossom curve is used to build a family of structured beams. The optical field distributions on beam waist, including intensity and phase, are calculated by the ray-optical Poincaré sphere method. The shape of inner and outer caustics of optical field are also detailed in order to demonstrate the self-healing or non-diffraction features of beams. By using angular spectrum diffraction, the free space evolutions of such structured beams are demonstrated. The results show that the structured beam turns to be the well-known Laguerre-Gaussian beam when the leaf number of plum-blossom curve is 0. While the leaf number equals 1, the structured beam has non-diffraction property, for its inner caustic concentrates onto two points. In geometrical optics sight, all light rays are tangent to the inner caustic, and the optical fields carried by rays interfere near the caustic, leading the beam to possess a self-healing capacity. The self-healing property is demonstrated in terms of rays. With the beam's propagating, rays which launch from the inner side of beam gradually reach the outer side of beam. On the contrary, the rays launching from the inner side of beam arrive at the outer side of beam. When the center of beam is blocked, the inner rays are also blocked. After propagating, outer side rays will reach the inner side, fill up the hole of beam, and recover the injury of optical field. Furthermore, we demonstrate the structured beam with a 5leave plum-blossom curve. In this case, the inner caustic of this beam turns into a decagonal star structure; our simulation results show that this beam has relatively strong self-healing capability. Theoretically, one can simply change the parameters of plum-blossom curve or choose other kind of Poincaré sphere curve to create more complex structured beams.
      通信作者: 周金华, zhoujinhua@ahmu.edu.cn
    • 基金项目: 安徽省转化医学研究院科研基金(批准号:2017zhyx25)、安徽高校自然科学研究重点项目(批准号:KJ2016A361)和安徽医科大学博士科研资助基金(批准号:XJ201518)资助的课题.
      Corresponding author: Zhou Jin-Hua, zhoujinhua@ahmu.edu.cn
    • Funds: Project supported by the Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province, China (Grant No. 2017zhyx25), the Key Project of Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant No. KJ2016A361), and the Grants for Scientific Research of BSKY from Anhui Medical University, China (Grant No. XJ201518).
    [1]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52

    [2]

    Gutiérrez-Vega J C, Bandres M A 2005 J. Opt. Soc. Am. A 22 289

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Penciu R S, Paltoglou V, Efremidis N K 2015 Opt. Lett. 40 1444

    [5]

    Bandres M A, Gutiérrez-Vega J C 2004 Opt. Lett. 29 144

    [6]

    Bandres M A, Gutiérrez-Vega J C 2004 J. Opt. Soc. Am. A 21 873

    [7]

    Wang J 2016 Photon. Res. 4 B14

    [8]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photon. 4 780

    [9]

    Lei M, Zumbusch A 2010 Opt. Express 18 19232

    [10]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [11]

    Woerdemann M, Alpmann C, Esseling M, Denz C 2013 Laser Photon. Rev. 7 839

    [12]

    Dholakia K, Čižmár T 2011 Nat. Photon. 5 335

    [13]

    Dietrich M 1972 Light Transmission Optics (New York: van Nostrand Reinhold) pp230-238

    [14]

    Vainshtein L A 1964 Sov. Phys. Jetp. 18 471

    [15]

    Chen Y Q, Wang J H 2004 Laser Principle (Hangzhou: Zhejiang Universir publisher) pp55-159 [陈钰清, 王静环 2004 激光原理 (杭州: 浙江大学出版社) 第55–159页]

    [16]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [17]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728

    [18]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill) pp55-61

    [19]

    Li M 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese) [黎茂 2006 硕士学位论文 (成都: 电子科技大学)]

    [20]

    Anguiano-Morales M, Martínez A, Iturbe-Castillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [21]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp349-352

    [22]

    Vaveliuk P, Martínez-Matos ó, Ren Y X, Lu R D 2017 Phys. Rev. A 95 063838

    [23]

    Zhang S H, Zhou J H, Gong L 2018 Opt. Express 26 3381

    [24]

    Zhang S H, Liang Z, Zhou J H 2017 Acta Phys. Sin. 66 048701 (in Chinese) [张书赫, 梁振, 周金华 2017 物理学报 66 048701]

    [25]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (Norwood: Artech House) pp263-288

    [26]

    Alonso M A 2013 J. Opt. Soc. Am. A 30 1223

  • [1]

    Simpson N B, Dholakia K, Allen L, Padgett M J 1997 Opt. Lett. 22 52

    [2]

    Gutiérrez-Vega J C, Bandres M A 2005 J. Opt. Soc. Am. A 22 289

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Penciu R S, Paltoglou V, Efremidis N K 2015 Opt. Lett. 40 1444

    [5]

    Bandres M A, Gutiérrez-Vega J C 2004 Opt. Lett. 29 144

    [6]

    Bandres M A, Gutiérrez-Vega J C 2004 J. Opt. Soc. Am. A 21 873

    [7]

    Wang J 2016 Photon. Res. 4 B14

    [8]

    Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photon. 4 780

    [9]

    Lei M, Zumbusch A 2010 Opt. Express 18 19232

    [10]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [11]

    Woerdemann M, Alpmann C, Esseling M, Denz C 2013 Laser Photon. Rev. 7 839

    [12]

    Dholakia K, Čižmár T 2011 Nat. Photon. 5 335

    [13]

    Dietrich M 1972 Light Transmission Optics (New York: van Nostrand Reinhold) pp230-238

    [14]

    Vainshtein L A 1964 Sov. Phys. Jetp. 18 471

    [15]

    Chen Y Q, Wang J H 2004 Laser Principle (Hangzhou: Zhejiang Universir publisher) pp55-159 [陈钰清, 王静环 2004 激光原理 (杭州: 浙江大学出版社) 第55–159页]

    [16]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [17]

    Alonso M A, Forbes G W 2002 Opt. Express 10 728

    [18]

    Goodman J W 1968 Introduction to Fourier Optics (New York: McGraw-Hill) pp55-61

    [19]

    Li M 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese) [黎茂 2006 硕士学位论文 (成都: 电子科技大学)]

    [20]

    Anguiano-Morales M, Martínez A, Iturbe-Castillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [21]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp349-352

    [22]

    Vaveliuk P, Martínez-Matos ó, Ren Y X, Lu R D 2017 Phys. Rev. A 95 063838

    [23]

    Zhang S H, Zhou J H, Gong L 2018 Opt. Express 26 3381

    [24]

    Zhang S H, Liang Z, Zhou J H 2017 Acta Phys. Sin. 66 048701 (in Chinese) [张书赫, 梁振, 周金华 2017 物理学报 66 048701]

    [25]

    McNamara D A, Pistorius C W I, Malherbe J A G 1990 Introduction to the Uniform Geometrical Theory of Diffraction (Norwood: Artech House) pp263-288

    [26]

    Alonso M A 2013 J. Opt. Soc. Am. A 30 1223

  • [1] 许明伟, 杜康, 李可, 王飞翔, 肖体乔. 时变复杂背景自由运动目标的高灵敏追迹成像. 物理学报, 2023, 72(15): 150701. doi: 10.7498/aps.72.20230360
    [2] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法. 物理学报, 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [4] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [5] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [6] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析. 物理学报, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [7] 张书赫, 梁振, 周金华. 运用四元数分析椭球微粒所受的光阱力. 物理学报, 2017, 66(4): 048701. doi: 10.7498/aps.66.048701
    [8] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [9] 张晓晖, 张爽, 孙春生. 粗糙海面对高斯分布激光光束的反射模型推导. 物理学报, 2016, 65(14): 144204. doi: 10.7498/aps.65.144204
    [10] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [11] 王美洁, 贾维国, 张思远, 乔海龙, 杨军, 张俊萍, 门克内木乐. 拉曼效应对低双折射光纤偏振特性的影响. 物理学报, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [12] 王驰, 毕书博, 王利, 夏学勤, 丁卫, 于瀛洁. 超小自聚焦光纤探头研究用场追迹数值模拟技术. 物理学报, 2013, 62(2): 024217. doi: 10.7498/aps.62.024217
    [13] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究. 物理学报, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [14] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究. 物理学报, 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [15] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较. 物理学报, 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [16] 岑兆丰, 李晓彤. 热应力双折射介质中的光传输研究. 物理学报, 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [17] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [18] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像. 物理学报, 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [19] 何开华, 郑 广, 吕 涛, 陈 刚, 姬广富. 高压对氮化硼纳米管的几何结构、电子结构和光学性质的影响. 物理学报, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [20] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
计量
  • 文章访问数:  6804
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-09-29
  • 刊出日期:  2019-11-20

/

返回文章
返回