搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种宽带可重构反射型极化旋转表面

于惠存 曹祥玉 高军 杨欢欢 韩江枫 朱学文 李桐

引用本文:
Citation:

一种宽带可重构反射型极化旋转表面

于惠存, 曹祥玉, 高军, 杨欢欢, 韩江枫, 朱学文, 李桐

Broadband reconfigurable reflective polarization convertor

Yu Hui-Cun, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Han Jiang-Feng, Zhu Xue-Wen, Li Tong
PDF
导出引用
  • 将超材料设计思想与微电机系统(micro-electro-mechanical system,MEMS)技术相结合,提出了一种宽带可重构反射型极化旋转表面.该结构由上层方形金属贴片、中间介质层、金属底板以及连接贴片与底板的金属通孔构成,通过在电流短路点处加载MEMS开关,使其具有电可调特性.仿真结果表明,当MEMS开关导通时,该结构能在7.78 GHz–14.10 GHz频带内将入射的线极化波转化为正交极化波并反射;当MEMS开关断开时,入射波则以同极化全反射.加工了实际的样品并进行了测试,结果与仿真符合较好.该结构具有结构简单易加工、器件个数少、工作频带宽、损耗低等优点,在电磁波动态调控中具有潜在应用价值.
    With the rapid evolution of radar technology and mobile communication systems, polarization conversion has received much attention from academia and industry in recent years, which has the advantages of improving system performance through eliminating multipath fading. In this paper, a novel broadband reconfigurable reflective polarization convertor is designed, which combines the idea of metamaterial and the technology of micro-electro-mechanical system (MEMS) switches. The proposed structure consists of three layers: an upper metallic patches layer, a middle dielectric layer with a thickness of 2 mm, and a bottom metal plate. There are through-holes of metal connecting the upper and bottom layers. According to the simulation using HFSS software, when the MEMS switch is on, the device works with a relative bandwidth of 57.77% from 7.78 GHz to 14.10 GHz, of which the polarization conversion ratio is larger than 80%. In addition, at 7.62 GHz and 12.56 GHz, the reflected wave is a right-hand circularly polarized wave and a left-hand circularly polarized wave, respectively. When the MEMS switch is off, the reflected wave is in the same polarization, which means the device does not convert the polarization of electromagnetic wave anymore. The electromagnetic wave are decomposed into the u-v coordinate system to further understand the wideband polarization rotation. The reflection phase and the surface current distributions of the convertor are analyzed. Then, the working principle of polarization rotation is explained by analyzing the current distributions and explaining the theory from three different viewpoints. Finally, a 1225-cell (35×35) prototype is fabricated to verify the simulation results. The measured curve has three resonant frequencies and shifts towards the lower frequency slightly. The discrepancy between simulations and measurements is mainly attributed to the restriction of fabrication and measurement condition. In general, experimental results are in agreement with the simulations: when linear polarized wave is incident, the reflected wave realizes the transition from co-polarization to cross-polarization as the switch is switched from off to on. The proposed reconfigurable polarization rotation surface has advantages of broadband, low loss and ease of fabrication, which has great potential applications in antenna radiation, reducing the radar cross section and other territories in controlling electromagnetic wave dynamically.
      通信作者: 曹祥玉, xiangyucaokdy@163.com;gjgj9694@163.com ; 高军, xiangyucaokdy@163.com;gjgj9694@163.com
    • 基金项目: 国家自然科学基金(批准号:61471389,61671464,61701523,61801508)、博士后创新人才支持计划(批准号:BX20180375)和陕西省自然科学基金(批准号:2018JM6040)资助的课题.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com;gjgj9694@163.com ; Gao Jun, xiangyucaokdy@163.com;gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61671464, 61701523, 61801508), the Postdoctoral Innovative Talents Support Program of China (Grant No. BX20180375), and the Natural Science Foundation of Shannxi Province, China (Grant No. 2018JM6040).
    [1]

    Ji L Y, Qin P Y, Guo Y J, Ding C, Fu G, Gong S X 2016 IEEE Trans. Antennas Propag. 64 4534

    [2]

    Hu J, Luo G Q, Hao Z C 2018 IEEE Access 6 6130

    [3]

    Cai L P, Cheng Y F, Cheng K K M 2017 IEEE Asia Pacific Microwave Conference Kuala Lumpur, Malaysia, November 13-16, 2017 p112

    [4]

    Zhang M T, Gao S, Jiao Y C, Wan J X, Tian B N, Wu C B, Farrall A J 2016 IEEE Trans. Antennas Propag. 64 1634

    [5]

    Fartookzadeh M 2017 Appl. Phys. B 123 115

    [6]

    Su P, Zhao Y, Jia S, Shi W, Wang H 2016 Sci. Rep. 6 20387

    [7]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 063908

    [8]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [9]

    Cheng H, Chen S Q, Yu P, Li J X, Deng L, Tian J G 2013 Opt. Lett. 38 1567

    [10]

    Doumanis E, Goussetis G, Dickie R, Cahill R, Baine P, Bain M, Fusco V, Encinar J A, Toso G 2014 IEEE Trans. Antennas Propag. 62 2302

    [11]

    Wu P C, Yan L B, Song Q H, Zhu W M, Zhang W, Tsai D P, Capasso F, Liu A Q 2015 Conference on Lasers and Electro-Optics San Jose, California United States, May 10-15, 2015 STh1M.6

    [12]

    Li W T, Gao S, Cai Y M, Luo Q, Sobhy M, Wei G, Xu J D, Li J Z, Wu C Y, Cheng Z Q 2017 IEEE Trans. Antennas Propag. 65 4470

    [13]

    Yi G W, Huang C, Ma X L, Pan W B, Luo X G 2014 Microwave Opt. Technol. Lett. 56 1281

    [14]

    Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui J H, Wang C T, Luo X G 2015 Adv. Opt. Mater. 2 945

    [15]

    Cui J H, Huang C, Pan W B, Pu M B, Guo Y H, Luo X G 2016 Sci. Rep. 6 30771

    [16]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901

    [17]

    Zhang M, Zhang W, Liu A Q, Li F C, Lan C F 2017 Sci. Rep. 7 12068

    [18]

    Wang F W, Guo L X, Gong S X 2018 J. Xidian Univ. 45 80 (in Chinese) [王夫蔚, 郭立新, 龚书喜 2018 西安电子科技大学学报(自然科学版) 45 80]

    [19]

    Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L 2017 Appl. Phys. 121 174902

    [20]

    Jiang H Y N, Lei W, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616

    [21]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [22]

    Jia Y T, Liu Y, Zhang W B, Gong S X 2016 Appl. Phys. Lett. 109 051901

  • [1]

    Ji L Y, Qin P Y, Guo Y J, Ding C, Fu G, Gong S X 2016 IEEE Trans. Antennas Propag. 64 4534

    [2]

    Hu J, Luo G Q, Hao Z C 2018 IEEE Access 6 6130

    [3]

    Cai L P, Cheng Y F, Cheng K K M 2017 IEEE Asia Pacific Microwave Conference Kuala Lumpur, Malaysia, November 13-16, 2017 p112

    [4]

    Zhang M T, Gao S, Jiao Y C, Wan J X, Tian B N, Wu C B, Farrall A J 2016 IEEE Trans. Antennas Propag. 64 1634

    [5]

    Fartookzadeh M 2017 Appl. Phys. B 123 115

    [6]

    Su P, Zhao Y, Jia S, Shi W, Wang H 2016 Sci. Rep. 6 20387

    [7]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 063908

    [8]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [9]

    Cheng H, Chen S Q, Yu P, Li J X, Deng L, Tian J G 2013 Opt. Lett. 38 1567

    [10]

    Doumanis E, Goussetis G, Dickie R, Cahill R, Baine P, Bain M, Fusco V, Encinar J A, Toso G 2014 IEEE Trans. Antennas Propag. 62 2302

    [11]

    Wu P C, Yan L B, Song Q H, Zhu W M, Zhang W, Tsai D P, Capasso F, Liu A Q 2015 Conference on Lasers and Electro-Optics San Jose, California United States, May 10-15, 2015 STh1M.6

    [12]

    Li W T, Gao S, Cai Y M, Luo Q, Sobhy M, Wei G, Xu J D, Li J Z, Wu C Y, Cheng Z Q 2017 IEEE Trans. Antennas Propag. 65 4470

    [13]

    Yi G W, Huang C, Ma X L, Pan W B, Luo X G 2014 Microwave Opt. Technol. Lett. 56 1281

    [14]

    Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui J H, Wang C T, Luo X G 2015 Adv. Opt. Mater. 2 945

    [15]

    Cui J H, Huang C, Pan W B, Pu M B, Guo Y H, Luo X G 2016 Sci. Rep. 6 30771

    [16]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901

    [17]

    Zhang M, Zhang W, Liu A Q, Li F C, Lan C F 2017 Sci. Rep. 7 12068

    [18]

    Wang F W, Guo L X, Gong S X 2018 J. Xidian Univ. 45 80 (in Chinese) [王夫蔚, 郭立新, 龚书喜 2018 西安电子科技大学学报(自然科学版) 45 80]

    [19]

    Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L 2017 Appl. Phys. 121 174902

    [20]

    Jiang H Y N, Lei W, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616

    [21]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [22]

    Jia Y T, Liu Y, Zhang W B, Gong S X 2016 Appl. Phys. Lett. 109 051901

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [3] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [7] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料. 物理学报, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [8] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现. 物理学报, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [9] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [10] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [11] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [14] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [15] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计. 物理学报, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [16] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证. 物理学报, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [19] 樊京, 蔡广宇. 一种基于旋转调谐的超材料. 物理学报, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [20] 孟繁义, 吴 群, 吴 健. 1.7—2.7GHz宽频带小单元异向介质设计及其介质参数提取. 物理学报, 2006, 55(5): 2194-2199. doi: 10.7498/aps.55.2194
计量
  • 文章访问数:  6586
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-09-12
  • 刊出日期:  2019-11-20

/

返回文章
返回