-
In recent years, quantum communication technology has developed rapidly, and quantum communication schemes based on hyperentangled states have attracted widespread attention due to their efficiency and security. However, in practical communication, maximally hyperentangled states are highly susceptible to environmental noise, which causes them to degrade into non-maximally hyperentangled states. This degradation significantly reduces the fidelity of the quantum information and communication efficiency. In this article, we propose an efficient entanglement concentration scheme to restore degraded polarization-time hyperentangled W states, thereby enhancing the reliability and transmission distance of multiparty quantum communication. The protocol employs the parameter-splitting approach, where the receiver performs local operations on received non-maximally hyperentangled photons using linear optical elements, achieving hyperentanglement concentration through detector responses and post-selection. This method eliminates the need for auxiliary photons, reducing the use of quantum resources and maintaining operational simplicity. Moreover, the scheme can be extended to N-photon hyperentangled W states. The theoretical calculations demonstrate that the success probability of the protocol is determined by the minimal parameter of the hyperentangled state, exhibiting a monotonic increase as this parameter grows. Under ideal conditions, the maximum success probability approaches unity and the success probability improves with the number of entangled photons. When accounting for the efficiency of realistic optical components, the maximal success probabilities for hyperentangled W states with N=3, 4, and 5 are found to be 0.856, 0.791, and 0.732, respectively. Consequently, the proposed scheme efficiently concentrates the degraded polarization-time hyperentangled W state into the maximally hyperentangled state. This work is of significant importance for long-distance information transmission and provides theoretical references for implementing long-distance multi-party quantum communication.
-
Keywords:
- hyperentanglement /
- W state /
- entanglement concentration /
- linear optics
-
[1] Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005Phys. Rev. Lett. 95260501
[2] Bhatti D, von Zanthier J, Agarwal G S 2015Phys. Rev. A 91 062303
[3] Liu W Q, Wei H R, Kwek L C 2020Phys. Rev. Appl. 14 054057
[4] Portmann C, Renner R 2022Rev. Mod. Phys. 94 025008
[5] Liu X S, Long G L, Tong D M, Li F 2002Phys. Rev. A 65 022304
[6] Long G L, Liu X S 2002Phys. Rev. A 65 032302
[7] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017Phys. Rev. Lett. 118 220501
[8] Zhu F, Zhang W, Sheng Y B, Huang Y D 2017Sci. Bull. 62 1519
[9] Zhou L, Sheng Y B, Long G L 2020Sci. Bull. 65 12
[10] Sheng Y B, Zhou L, Long G L 2022Sci. Bull. 67 367
[11] Zhou L, Sheng Y B 2022Sci. China-Phys. Mech. Astron. 65 250311
[12] Ying J W, Zhao P, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2024Phys. Rev. Appl. 22 024040
[13] Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024Fundam. Res. 4 851
[14] Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023Nat. Rev. Phys. 5 339
[15] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015Nature 518 516
[16] Graham T M, Bernstein H J, Wei T C, Junge M, Kwiat P G 2015Nat. Commun. 6 7185
[17] Ren B C, Wang G Y, Deng F G 2015Phys. Rev. A 91 032328
[18] Ren B C, Wei H R, Deng F G 2013Laser. Phys. Lett. 10 095202
[19] Ren B C, Deng F G 2015Acta Phys. Sin. 64 160303(in Chinese) [任宝藏,邓富国2015物理学报64 160303]
[20] Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996Phys. Rev. A 532046
[21] Zhao Z, Pan J W, Zhan M S 2001Phys. Rev. A 64 014301
[22] Yamamoto T, Koashi M, Imoto N 2001Phys. Rev. A 64 012304
[23] Sheng Y B, Deng F G, Zhou H Y 2008Phys. Rev. A 77062325
[24] Gu Y J, Xian L, Li W D, Ma L Z 2008Chin. Phys Lett. 25 1191
[25] Zhou L, Sheng Y B, Zhao S M 2013, Chin. Phys. B 22 020307
[26] Guo R, Zhou L, Wang X F, Gu S P, Sheng Y B 2016Chin. Phys. B 25 030302.
[27] Zhao R T, Liang R S, Wang F Q 2017Acta Phys. Sin. 66 240301(in Chinese) [赵瑞通,梁瑞生,王发强2017物理学报66240301]
[28] Zhou L, Wang D D, Wang X F, Gu S P, Sheng Y B 2017Chin. Phys. B 26 020302.
[29] Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88012302
[30] Ren B C, Long G L 2015Sci. Rep. 5 16444
[31] Li X H, Ghose S 2015Phys. Rev. A 91 062302
[32] Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016Ann. Phys. 369 128
[33] Li C Y, Shen Y 2019Opt. Express 27 13172
[34] Liu Q, Song G Z, Qiu T H, Zhang X M, Ma H Y, Zhang M 2020Sci. Rep. 10 21444
[35] Jiang G L, Liu W Q, Wei H R 2023Phys. Rev. Appl. 19 034044
[36] Shi X, Lu Y, Peng N, Rottwitt K, Ou H J 2022J. Lightwave Technol. 40 7626
[37] Passos M H M, Balthazar W F, Khoury A Z, Hor-Meyll M, Davidovich L, Huguenin J A O 2018Phys. Rev. A. 97 022321
[38] Kaneda F, Xu F, Chapman J, Kwiat P G 2017Optica. 4 1034
计量
- 文章访问数: 17
- PDF下载量: 2
- 被引次数: 0