-
In recent years, quantum communication technology has developed rapidly, and quantum communication schemes based on hyperentangled states have attracted widespread attention due to their efficiency and security. However, in practical communication, maximally hyperentangled states are highly susceptible to environmental noise, which causes them to degrade into non-maximally hyperentangled states. This degradation significantly reduces the fidelity of the quantum information and communication efficiency. In this article, we propose an efficient entanglement concentration scheme to restore degraded polarization-time hyperentangled W states, thereby enhancing the reliability and transmission distance of multiparty quantum communication. The protocol employs the parameter-splitting approach, where the receiver performs local operations on received non-maximally hyperentangled photons by using linear optical elements, achieving hyperentanglement concentration through detector responses and post-selection. This method eliminates the need for auxiliary photons, thereby reducing the use of quantum resources and maintaining operational simplicity. Moreover, the scheme can be extended to N-photon hyperentangled W states. The theoretical calculations demonstrate that the success probability of the protocol is determined by the minimal parameter of the hyperentangled state, exhibiting a monotonic increase as this parameter grows. Under ideal conditions, the maximum success probability approaches unity and the success probability improves with the number of entangled photons increasing. When considering the efficiency of practical optical components, the maximal success probabilities for hyperentangled W states with N = 3, 4, and 5 are found to be 0.856, 0.791, and 0.732, respectively. Consequently, the proposed scheme efficiently concentrates the degraded polarization-time hyperentangled W state into the maximally hyperentangled state. This work is of significant importance for long-distance information transmission and provides theoretical references for implementing long-distance multi-party quantum communication.
-
Keywords:
- hyperentanglement /
- W state /
- entanglement concentration /
- linear optics
-
图 1 偏振-时间自由度的超纠缠W态的浓缩示意图 (PBS为偏振分束器, PCL为普克尔斯盒, Dj为单光子探测器, DL为延时装置, Rθ j为波片, 下标j = A或B)
Fig. 1. Schematic diagram of the concentration of hyperentangled W states in polarization and time-bin degrees of freedom (PBS is the polarization beam splitter, PCL is the Pockels Cells, Dj is the single photon detector, DL denotes the time-delay device, and Rθ j is the wave plate, where j = A or B)
-
[1] Barreiro J T, Langford N K, Peters N A, Kwiat P G 2005 Phys. Rev. Lett. 95 260501
Google Scholar
[2] Bhatti D, von Zanthier J, Agarwal G S 2015 Phys. Rev. A 91 062303
Google Scholar
[3] Liu W Q, Wei H R, Kwek L C 2020 Phys. Rev. Appl. 14 054057
Google Scholar
[4] Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008
Google Scholar
[5] Liu X S, Long G L, Tong D M, Li F 2002 Phys. Rev. A 65 022304
Google Scholar
[6] Long G L, Liu X S 2002 Phys. Rev. A 65 032302
Google Scholar
[7] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501
Google Scholar
[8] Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519
Google Scholar
[9] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12
Google Scholar
[10] Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367
Google Scholar
[11] Zhou L, Sheng Y B 2022 Sci. China-Phys. Mech. Astron. 65 250311
Google Scholar
[12] Ying J W, Zhao P, Zhong W, Du M M, Li X Y, Shen S T, Zhang A L, Zhou L, Sheng Y B 2024 Phys. Rev. Appl. 22 024040
Google Scholar
[13] Zeng H, Du M M, Zhong W, Zhou L, Sheng Y B 2024 Fundam. Res. 4 851
Google Scholar
[14] Hu X M, Guo Y, Liu B H, Li C F, Guo G C 2023 Nat. Rev. Phys. 5 339
Google Scholar
[15] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
Google Scholar
[16] Graham T M, Bernstein H J, Wei T C, Junge M, Kwiat P G 2015 Nat. Commun. 6 7185
Google Scholar
[17] Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328
Google Scholar
[18] Ren B C, Wei H R, Deng F G 2013 Laser. Phys. Lett. 10 095202
Google Scholar
[19] 任宝藏, 邓富国 2015 物理学报 64 160303
Google Scholar
Ren B C, Deng F G 2015 Acta Phys. Sin. 64 160303
Google Scholar
[20] Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046
Google Scholar
[21] Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301
Google Scholar
[22] Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304
Google Scholar
[23] Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325
Google Scholar
[24] Gu Y J, Xian L, Li W D, Ma L Z 2008 Chin. Phys Lett. 25 1191
Google Scholar
[25] Zhou L, Sheng Y B, Zhao S M 2013 Chin. Phys. B 22 020307
Google Scholar
[26] Guo R, Zhou L, Gu S P, Wang X F, Sheng Y B 2016 Chin. Phys. B 25 030302.
Google Scholar
[27] 赵瑞通, 梁瑞生, 王发强 2017 物理学报 66 240301
Google Scholar
Zhao R T, Liang R S, Wang F Q 2017 Acta Phys. Sin. 66 240301
Google Scholar
[28] Zhou L, Wang D D, Wang X F, Gu S P, Sheng Y B 2017 Chin. Phys. B 26 020302
Google Scholar
[29] Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302
Google Scholar
[30] Ren B C, Long G L 2015 Sci. Rep. 5 16444
Google Scholar
[31] Li X H, Ghose S 2015 Phys. Rev. A 91 062302
Google Scholar
[32] Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016 Ann. Phys. 369 128
Google Scholar
[33] Li C Y, Shen Y 2019 Opt. Express 27 13172
Google Scholar
[34] Liu Q, Song G Z, Qiu T H, Zhang X M, Ma H Y, Zhang M 2020 Sci. Rep. 10 21444
Google Scholar
[35] Jiang G L, Liu W Q, Wei H R 2023 Phys. Rev. Appl. 19 034044
Google Scholar
[36] Shi X, Lu Y, Peng N, Rottwitt K, Ou H J 2022 J. Lightwave Technol. 40 7626
Google Scholar
[37] Passos M H M, Balthazar W F, Khoury A Z, Hor-Meyll M, Davidovich L, Huguenin J A O 2018 Phys. Rev. A. 97 022321
Google Scholar
[38] Kaneda F, Xu F, Chapman J, Kwiat P G 2017 Optica 4 1034
Google Scholar
计量
- 文章访问数: 255
- PDF下载量: 9
- 被引次数: 0