搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子两自由度超并行量子计算与超纠缠态操控

任宝藏 邓富国

引用本文:
Citation:

光子两自由度超并行量子计算与超纠缠态操控

任宝藏, 邓富国

Hyper-parallel photonic quantum computation and manipulation on hyperentangled states

Ren Bao-Cang, Deng Fu-Guo
PDF
导出引用
  • 光子系统在量子信息处理和传输过程中有非常重要的应用. 譬如, 利用光子与原子(或人工原子)之间的相互作用, 可以完成信息的安全传输、存储和快速的并行计算处理等任务. 光子系统具有多个自由度, 如极化、空间模式、轨道角动量、时间-能量、频率等自由度. 光子系统的多个自由度可以同时应用于量子信息处理过程. 超并行量子计算利用光子系统多个自由度的光量子态同时进行量子并行计算, 使量子计算具有更强的并行性, 且需要的量子资源少, 更能抵抗光子数损耗等噪声的影响. 多个自由度同时存在纠缠的光子系统量子态称为超纠缠态, 它能够提高量子通信的容量与安全性, 辅助完成一些重要的量子通信任务. 在本综述中, 我们简要介绍了光子系统两自由度量子态在量子信息中的一些新应用, 包括超并行量子计算、超纠缠态分析、超纠缠浓缩和纯化三个部分.
    Photon system is a promising candidate for quantum information processing, and it can be used to achieve some important tasks with the interaction between a photon and an atom (or a artificial atom), such as the transmission of secret information, the storage of quantum states, and parallel quantum computing. Several degrees of freedom (DOFs) of a photon system can be used to carry information in the realization of quantum information processing, such as the polarization, spatial-mode, orbit-angular-momentum, time-bin, and frequency DOFs. A hyperparallel quantum computer can implement the quantum operations on several DOFs of a quantum system simultaneously, which reduces the operation time and the resources consumed in quantum information processing. The hyperparallel quantum operations are more robust against the photonic dissipation noise than the quantum computing in one DOF of a photon system. Hyperentanglement, defined as the entanglement in several DOFs of a quantum system, can improve the channel capacity and the security of long-distance quantum communication, and it can also be conductive to completing some important tasks in quantum communication. Hyperentangled Bell-state analysis is used to completely distinguish the 16 hyperentangled Bell states, which is very useful in high-capacity quantum communication protocols and quantum repeaters. In order to depress the effect of noises in quantum channel, hyperentanglement concentration and hyperentanglement purification are required to improve the entanglement of the quantum systems in long-distance quantum communication, which is also very useful in high-capacity quantum repeaters. Hyperentanglement concentration is used to distill several nonlocal photon systems in a maximally hyperentangled state from those in a partially hyperentangled pure state, and hyperentanglement purification is used to distill several nonlocal photon systems in a high-fidelity hyperentangled state from those in a mixed hyperentangled state with less entanglement. In this reviewing article, we review some new applications of photon systems with multiple DOFs in quantum information processing, including hyperparallel photonic quantum computation, hyperentangled-Bell-state analysis, hyperentanglement concentration, and hyperentanglement purification.
    • 基金项目: 国家自然科学基金(批准号:11474026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474026).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp1-59

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [3]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [4]

    Yoran N, Reznik B 2003 Phys. Rev. Lett. 91 037903

    [5]

    Zhang P, Liu R F, Huang Y F, Gao H, Li F L 2010 Phys. Rev. A 82 064302

    [6]

    Ren B C, Wei H R, Deng F G 2013 Laser Phys. Lett. 10 095202

    [7]

    Ren B C, Deng F G

    [8]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [9]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [10]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [11]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [12]

    Wang T J, Lu Y, Long G L 2012 Phys. Rev. A 86 042337

    [13]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [14]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [15]

    Ren B C, Deng F G 2013 Laser Phys. Lett. 10 115201

    [16]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [17]

    Li X H, Ghose S 2014 Laser Phys. Lett. 11 125201

    [18]

    Li X H, Ghose S 2015 Opt. Express 23 3550

    [19]

    Wang T J, Cao C, Wang C 2014 Phys. Rev. A 89 052303

    [20]

    Wang T J, Zhang Y, Wang C 2014 Laser Phys. Lett. 11 025203

    [21]

    Luo M X, Chen X B, Yang Y X, Qu Z G, Wang X J

    [22]

    Liu Q, Zhang M 2013 J. Opt. Soc. Am. B 30 2263

    [23]

    Yan X, Yu Y F, Zhang Z M 2014 Chin. Phys. B 23 060306

    [24]

    Ji Y Q, Jin Z, Zhu A D, Wang H F, Zhang S 2014 Chin. Phys. B 23 050306

    [25]

    Hong C H, Heoa J, Lima J I, Yang H J 2014 Chin. Phys. B 23 090309

    [26]

    Fan L L, Xia Y, Song J 2014 Quantum Inf. Process 13 1967

    [27]

    Chen X, Zeng Z, Li X H 2014 Commun. Theor. Phys. 61 322

    [28]

    Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516

    [29]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [30]

    O'Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264

    [31]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [32]

    Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501

    [33]

    Langford N K, Ramelow S, Prevedel R, et al. 2011 Nature 478 360

    [34]

    Wei H R, Deng F G 2013 Opt. Express 21 17671

    [35]

    Hua M, Tao M J, Deng F G 2014 Phys. Rev. A 90 012328

    [36]

    Hua M, Tao M J, Deng F G 2015 Sci. Rep. 5 9274

    [37]

    Li X Q, Wu Y W, Steel D, et al. 2003 Science 301 809

    [38]

    Beenakker C W J, DiVincenzo D P, Emary C, Kindermann M 2004 Phys. Rev. Lett. 93 020501

    [39]

    Xu G F, Zhang J, Tong D M, Sjöqvist E, Kwek L C 2012 Phys. Rev. Lett. 109 170501

    [40]

    Wei H R, Deng F G 2013 Phys. Rev. A 88 042323

    [41]

    Wei H R, Deng F G 2014 Sci. Rep. 4 7551

    [42]

    Gershenfeld N A, Chuang I L 1997 Science 275 350

    [43]

    Jones J A, Mosca M, Hansen R H 1998 Nature 393 344

    [44]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [45]

    Long G L, Xiao L 2004 Phys. Rev. A 69 052303

    [46]

    Long G L, Xiao L 2003 J. Chem. Phys. 119 8473

    [47]

    Turchette Q A, Hood C J, Lange W, Mabuchi H, Kimble H J 1995 Phys. Rev. Lett. 75 4710

    [48]

    Rauschenbeutel A, Nogues G, Osnaghi S, et al. 1999 Phys. Rev. Lett. 83 5166

    [49]

    Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y, Tsai J S 2003 Nature 425 941

    [50]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [51]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162

    [52]

    DiCarlo L, Chow J M, Gambetta J M, et al. 2009 Nature 460 240

    [53]

    Schmidt-Kaler F, Höffner H, Riebe M, et al. 2003 Nature 422 408

    [54]

    Hu C Y, Munro W J, O'Brien J L, Rarity J G 2009 Phys. Rev. B 80 205326

    [55]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, IEEE, New York 1984 p175

    [56]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [57]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [58]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. A 78 022321

    [59]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [60]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [61]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307

    [62]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [63]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [64]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [65]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [66]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [67]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169

    [68]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [69]

    Matsukevich D N, Kuzmich A 2004 Science 306 663

    [70]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828

    [71]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [72]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [73]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [74]

    Hu C Y, Young A, O'Brien J L, Munro W J, Rarity J G 2008 Phys. Rev. B 78 085307

    [75]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [76]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [77]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [78]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [79]

    Sheng Y B, Zhou L 2013 Entropy 15 1776

    [80]

    Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307

    [81]

    Wang C 2012 Phys. Rev. A 86 012323

    [82]

    Bose S, Vderal V, Knight P L 1999 Phys. Rev. A 60 194

    [83]

    Shi B S, Jiang Y K, Guo G C 2000 Phys. Rev. A 62 054301

    [84]

    Sheng Y B, Zhou L, Zhao S M, Zheng B Y 2012 Phys. Rev. A 85 012307

    [85]

    Deng F G 2012 Phys. Rev. A 85 022311

    [86]

    Sheng Y B, Zhou L, Zhao S M 2012 Phys. Rev. A 85 042302

    [87]

    Zhang W Z, Li W D, Shi P, Gu Y J 2011 Acta Phys. Sin. 60 060303 (in Chinese) [张闻钊, 李文东, 史鹏, 顾永建 2011 物理学报 60 060303]

    [88]

    Du F F, Deng F G

    [89]

    Maimaiti W, Li Z, Chesi S, et al.

    [90]

    Zhang R, Zhou S H, Cao C 2014 Sci. China: Phys. Mech. Astron. 57 1511

    [91]

    Sheng Y B, Liu J, Zhao S Y, et al. 2013 Chin. Sci. Bull. 58 3507

    [92]

    Wang C, He L Y, Zhang Y, et al. 2013 Sci. China: Phys. Mech. Astron. 56 2054

    [93]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [94]

    Pan J W, Simon C, Brukner C, Zellinger A 2001 Nature 410 1067

    [95]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [96]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 042308

    [97]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [98]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [99]

    Li X H 2010 Phys. Rev. A 82 044304

    [100]

    Deng F G 2011 Phys. Rev. A 83 062316

    [101]

    Sheng Y B, Zhou L 2014 Laser Phys. Lett. 11 085203

    [102]

    Li T, Yang G J, Deng F G 2014 Opt. Express 22 23897

    [103]

    Liu Y 2013 Chin. Sci. Bull. 58 2927

    [104]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 100304

    [105]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 010302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 010302]

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp1-59

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [3]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135

    [4]

    Yoran N, Reznik B 2003 Phys. Rev. Lett. 91 037903

    [5]

    Zhang P, Liu R F, Huang Y F, Gao H, Li F L 2010 Phys. Rev. A 82 064302

    [6]

    Ren B C, Wei H R, Deng F G 2013 Laser Phys. Lett. 10 095202

    [7]

    Ren B C, Deng F G

    [8]

    Ren B C, Wang G Y, Deng F G 2015 Phys. Rev. A 91 032328

    [9]

    Kwiat P G 1997 J. Mod. Opt. 44 2173

    [10]

    Sheng Y B, Deng F G, Long G L 2010 Phys. Rev. A 82 032318

    [11]

    Ren B C, Wei H R, Hua M, Li T, Deng F G 2012 Opt. Express 20 24664

    [12]

    Wang T J, Lu Y, Long G L 2012 Phys. Rev. A 86 042337

    [13]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [14]

    Ren B C, Du F F, Deng F G 2014 Phys. Rev. A 90 052309

    [15]

    Ren B C, Deng F G 2013 Laser Phys. Lett. 10 115201

    [16]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [17]

    Li X H, Ghose S 2014 Laser Phys. Lett. 11 125201

    [18]

    Li X H, Ghose S 2015 Opt. Express 23 3550

    [19]

    Wang T J, Cao C, Wang C 2014 Phys. Rev. A 89 052303

    [20]

    Wang T J, Zhang Y, Wang C 2014 Laser Phys. Lett. 11 025203

    [21]

    Luo M X, Chen X B, Yang Y X, Qu Z G, Wang X J

    [22]

    Liu Q, Zhang M 2013 J. Opt. Soc. Am. B 30 2263

    [23]

    Yan X, Yu Y F, Zhang Z M 2014 Chin. Phys. B 23 060306

    [24]

    Ji Y Q, Jin Z, Zhu A D, Wang H F, Zhang S 2014 Chin. Phys. B 23 050306

    [25]

    Hong C H, Heoa J, Lima J I, Yang H J 2014 Chin. Phys. B 23 090309

    [26]

    Fan L L, Xia Y, Song J 2014 Quantum Inf. Process 13 1967

    [27]

    Chen X, Zeng Z, Li X H 2014 Commun. Theor. Phys. 61 322

    [28]

    Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516

    [29]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [30]

    O'Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264

    [31]

    Duan L M, Kimble H J 2004 Phys. Rev. Lett. 92 127902

    [32]

    Menicucci N C, Flammia S T, Pfister O 2008 Phys. Rev. Lett. 101 130501

    [33]

    Langford N K, Ramelow S, Prevedel R, et al. 2011 Nature 478 360

    [34]

    Wei H R, Deng F G 2013 Opt. Express 21 17671

    [35]

    Hua M, Tao M J, Deng F G 2014 Phys. Rev. A 90 012328

    [36]

    Hua M, Tao M J, Deng F G 2015 Sci. Rep. 5 9274

    [37]

    Li X Q, Wu Y W, Steel D, et al. 2003 Science 301 809

    [38]

    Beenakker C W J, DiVincenzo D P, Emary C, Kindermann M 2004 Phys. Rev. Lett. 93 020501

    [39]

    Xu G F, Zhang J, Tong D M, Sjöqvist E, Kwek L C 2012 Phys. Rev. Lett. 109 170501

    [40]

    Wei H R, Deng F G 2013 Phys. Rev. A 88 042323

    [41]

    Wei H R, Deng F G 2014 Sci. Rep. 4 7551

    [42]

    Gershenfeld N A, Chuang I L 1997 Science 275 350

    [43]

    Jones J A, Mosca M, Hansen R H 1998 Nature 393 344

    [44]

    Feng G R, Xu G F, Long G L 2013 Phys. Rev. Lett. 110 190501

    [45]

    Long G L, Xiao L 2004 Phys. Rev. A 69 052303

    [46]

    Long G L, Xiao L 2003 J. Chem. Phys. 119 8473

    [47]

    Turchette Q A, Hood C J, Lange W, Mabuchi H, Kimble H J 1995 Phys. Rev. Lett. 75 4710

    [48]

    Rauschenbeutel A, Nogues G, Osnaghi S, et al. 1999 Phys. Rev. Lett. 83 5166

    [49]

    Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y, Tsai J S 2003 Nature 425 941

    [50]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [51]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162

    [52]

    DiCarlo L, Chow J M, Gambetta J M, et al. 2009 Nature 460 240

    [53]

    Schmidt-Kaler F, Höffner H, Riebe M, et al. 2003 Nature 422 408

    [54]

    Hu C Y, Munro W J, O'Brien J L, Rarity J G 2009 Phys. Rev. B 80 205326

    [55]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India, IEEE, New York 1984 p175

    [56]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [57]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [58]

    Li X H, Deng F G, Zhou H Y 2008 Phys. Rev. A 78 022321

    [59]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [60]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [61]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307

    [62]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [63]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [64]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [65]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305

    [66]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [67]

    Dür W, Briegel H J, Cirac J I, Zoller P 1999 Phys. Rev. A 59 169

    [68]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [69]

    Matsukevich D N, Kuzmich A 2004 Science 306 663

    [70]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828

    [71]

    Chou C W, Laurat J, Deng H, Choi K S, de Riedmatten H, Felinto D, Kimble H J 2007 Science 316 1316

    [72]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505

    [73]

    Wang T J, Song S Y, Long G L 2012 Phys. Rev. A 85 062311

    [74]

    Hu C Y, Young A, O'Brien J L, Munro W J, Rarity J G 2008 Phys. Rev. B 78 085307

    [75]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [76]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [77]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [78]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [79]

    Sheng Y B, Zhou L 2013 Entropy 15 1776

    [80]

    Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307

    [81]

    Wang C 2012 Phys. Rev. A 86 012323

    [82]

    Bose S, Vderal V, Knight P L 1999 Phys. Rev. A 60 194

    [83]

    Shi B S, Jiang Y K, Guo G C 2000 Phys. Rev. A 62 054301

    [84]

    Sheng Y B, Zhou L, Zhao S M, Zheng B Y 2012 Phys. Rev. A 85 012307

    [85]

    Deng F G 2012 Phys. Rev. A 85 022311

    [86]

    Sheng Y B, Zhou L, Zhao S M 2012 Phys. Rev. A 85 042302

    [87]

    Zhang W Z, Li W D, Shi P, Gu Y J 2011 Acta Phys. Sin. 60 060303 (in Chinese) [张闻钊, 李文东, 史鹏, 顾永建 2011 物理学报 60 060303]

    [88]

    Du F F, Deng F G

    [89]

    Maimaiti W, Li Z, Chesi S, et al.

    [90]

    Zhang R, Zhou S H, Cao C 2014 Sci. China: Phys. Mech. Astron. 57 1511

    [91]

    Sheng Y B, Liu J, Zhao S Y, et al. 2013 Chin. Sci. Bull. 58 3507

    [92]

    Wang C, He L Y, Zhang Y, et al. 2013 Sci. China: Phys. Mech. Astron. 56 2054

    [93]

    Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A, Wootters W K 1996 Phys. Rev. Lett. 76 722

    [94]

    Pan J W, Simon C, Brukner C, Zellinger A 2001 Nature 410 1067

    [95]

    Simon C, Pan J W 2002 Phys. Rev. Lett. 89 257901

    [96]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 042308

    [97]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 81 032307

    [98]

    Sheng Y B, Deng F G 2010 Phys. Rev. A 82 044305

    [99]

    Li X H 2010 Phys. Rev. A 82 044304

    [100]

    Deng F G 2011 Phys. Rev. A 83 062316

    [101]

    Sheng Y B, Zhou L 2014 Laser Phys. Lett. 11 085203

    [102]

    Li T, Yang G J, Deng F G 2014 Opt. Express 22 23897

    [103]

    Liu Y 2013 Chin. Sci. Bull. 58 2927

    [104]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 100304

    [105]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 010302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 010302]

  • [1] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [2] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择. 物理学报, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [3] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [4] 李娟, 李佳明, 蔡春晓, 孙恒信, 刘奎, 郜江瑞. 优化抽运空间分布实现连续变量超纠缠的纠缠增强. 物理学报, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [5] 鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红. 超冷原子系综的非高斯纠缠态与精密测量. 物理学报, 2019, 68(4): 040306. doi: 10.7498/aps.68.20190147
    [6] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [7] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [8] 丁东, 何英秋, 闫凤利, 高亭. 六光子超纠缠态制备方案. 物理学报, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [9] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定 . 物理学报, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [10] 张闻钊, 李文东, 史鹏, 顾永建. 3对非最大纠缠粒子的确定性纠缠浓缩协议. 物理学报, 2011, 60(6): 060303. doi: 10.7498/aps.60.060303
    [11] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [12] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享. 物理学报, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [13] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [14] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [15] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [16] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [17] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [18] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, 2005, 54(2): 736-741. doi: 10.7498/aps.54.736
    [19] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  3900
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-08
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-08-05

光子两自由度超并行量子计算与超纠缠态操控

  • 1. 北京师范大学物理学系, 北京 100875
    基金项目: 国家自然科学基金(批准号:11474026)资助的课题.

摘要: 光子系统在量子信息处理和传输过程中有非常重要的应用. 譬如, 利用光子与原子(或人工原子)之间的相互作用, 可以完成信息的安全传输、存储和快速的并行计算处理等任务. 光子系统具有多个自由度, 如极化、空间模式、轨道角动量、时间-能量、频率等自由度. 光子系统的多个自由度可以同时应用于量子信息处理过程. 超并行量子计算利用光子系统多个自由度的光量子态同时进行量子并行计算, 使量子计算具有更强的并行性, 且需要的量子资源少, 更能抵抗光子数损耗等噪声的影响. 多个自由度同时存在纠缠的光子系统量子态称为超纠缠态, 它能够提高量子通信的容量与安全性, 辅助完成一些重要的量子通信任务. 在本综述中, 我们简要介绍了光子系统两自由度量子态在量子信息中的一些新应用, 包括超并行量子计算、超纠缠态分析、超纠缠浓缩和纯化三个部分.

English Abstract

参考文献 (105)

目录

    /

    返回文章
    返回