搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷原子系综的非高斯纠缠态与精密测量

鹿博 韩成银 庄敏 柯勇贯 黄嘉豪 李朝红

引用本文:
Citation:

超冷原子系综的非高斯纠缠态与精密测量

鹿博, 韩成银, 庄敏, 柯勇贯, 黄嘉豪, 李朝红

Non-Gaussian entangled states and quantum metrology with ultracold atomic ensemble

Lu Bo, Han Cheng-Yin, Zhuang Min, Ke Yong-Guan, Huang Jia-Hao, Lee Chao-Hong
PDF
HTML
导出引用
  • 量子精密测量是基于量子力学的基本原理对特定物理量实施测量, 并利用量子效应提高测量精度的交叉科学. 随着超冷原子实验技术的发展, 超冷原子为量子精密测量提供了一个优异的研究平台. 利用发展成熟的量子调控技术, 人们可以基于超冷原子系综制备一些新奇的非高斯多粒子纠缠态. 基于多体量子干涉, 利用这些非高斯纠缠态作为输入, 可以实现超越标准量子极限的高精度测量. 本文简要综述这一研究领域的进展.
    Quantum metrology is the interdisciplinary of investigating how to utilize the principles of quantum mechanics to perform parameter estimation and improve the measurement precision by quantum effects. With the experimental developments of ultracold atoms, ultracold atomic ensemble provides an excellent platform for implementing quantum metrology. Attributed to well-developed techniques of quantum control, one can prepare several exotic non-Gaussian multi-particle entangled states in the ensembles of ultracold atoms. Based on many-body quanum interferometry, and using these non-Gaussian entangled states as probe, the high-precision measurement beyond the standard quantum limit can be realized. This article introduces the background and advancement of this field.
      通信作者: 李朝红, lichaoh2@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874434, 11574405, 11704420)资助的课题.
      Corresponding author: Lee Chao-Hong, lichaoh2@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874434, 11574405, 11704420).
    [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [4]

    Pezzè L, Smerzi A, Oberthaler M, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [5]

    Zhou L, Long S, Tang B, Chen X, Gao F, Peng W, Duan W, Zhong J, Xiong Z, Wang J, Zhang Y, Zhan M 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Williams J, Chiow S, Yu N, Müller H 2016 New J. Phys. 18 025018Google Scholar

    [7]

    Dickerson S, Hogan J, Sugarbaker A, Johnson D, Kasevich M 2013 Phys. Rev. Lett. 111 083001Google Scholar

    [8]

    Graham P, Hogan J, Kasevich M, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [9]

    Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, Zoest T, Ertmer W, Schleich W, Rasel E 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [10]

    Dolde F, Fedder H, Doherty M, Nöbauer T, Rempp F, Balsubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [11]

    Cooper J, Hallwood D, Dunningham J 2010 Phys. Rev. A 81 043624Google Scholar

    [12]

    Boto A, Kok P, Abrams D, Braunstein S, Williams C, Dowling J 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [13]

    Ockeloen C, Schmied R, Riedel M, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [14]

    Georgescu I 2014 Nat. Phys. 10 474Google Scholar

    [15]

    Wasilewski W, Jensen K, Krauter H, Renema J, Balabas M, Polzik E 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [16]

    Ke Y, Huang J, Zhuang M, Lu B, Lee C 2018 Phys. Rev. A 98 053826Google Scholar

    [17]

    Riedel M, Böhi P, Li Y, Hänsch T, Sinatra A, Treutlein P 2010 Nature 461 1170

    [18]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M 2010 Nature 464 1165Google Scholar

    [19]

    Wineland D 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [20]

    Blatt R, Wineland D 2008 Nature 453 1008Google Scholar

    [21]

    Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Britton J, Itano W, Jelenković B, Langer C, Rosenband T, Wineland D 2002 Phys. Rev. Lett. 89 247901Google Scholar

    [22]

    Huver S, Wildfeuer C, Dowling J 2008 Phys. Rev. A 78 063828Google Scholar

    [23]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [24]

    Fang K, Acosta V, Santori C, Huang Z, Itoh K, Watanabe H, Shikata S, Beausoleil R 2013 Phys. Rev. Lett. 110 130802Google Scholar

    [25]

    Simmons S, Jones J, Karlen S, Ardavan A, Morton J 2010 Phys. Rev. A 82 022330Google Scholar

    [26]

    Nie X, Huang J, Li Z, Zheng W, Lee C, Peng X, Du J 2018 Sci. Bull. 63 469Google Scholar

    [27]

    Nie X, Li J, Cui J, Luo Z, Huang J, Chen H, Lee C, Peng X, Du J 2015 New J. Phys. 17 053028Google Scholar

    [28]

    Pham L, Bar-Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M, Yacoby A, Walsworth R 2012 Phys. Rev. B 86 045214Google Scholar

    [29]

    Demkowicz-Dobrzański R, Kołodyński J, Guţă M 2012 Nat. Commun. 3 1063Google Scholar

    [30]

    Escher B, de Matos Filho R, Davidovich L 2011 Nat. Phys. 7 406Google Scholar

    [31]

    Braunstein S 1992 Phys. Rev. Lett. 69 3598Google Scholar

    [32]

    Braunstein S, Caves C 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [33]

    Huang J, Wu S, Zhong H, Lee C 2014 Annual Review of Cold Atoms and Molecules (Vol. 2) (World Scientific) p365

    [34]

    Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773Google Scholar

    [35]

    Luo X, Zou Y, Wu L, Liu Q, Han M, Tey M, You L 2017 Science 355 620Google Scholar

    [36]

    Zou Y, Wu L, Liu Q, Luo X, Guo S, Cao J, Tey M, You L 2018 PNAS 115 6381Google Scholar

    [37]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D, Pezzè L, Smerzi A, Oberthaler M 2014 Science 345 424Google Scholar

    [38]

    Wang X, Sanders B 2001 Phys. Rev. A 65 012303Google Scholar

    [39]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Rep. 509 89Google Scholar

    [40]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138Google Scholar

    [41]

    Lee C, Huang J, Deng H, Dai H, Xu J 2012 Front. Phys. 7 109Google Scholar

    [42]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M 2008 Nature 455 1216Google Scholar

    [43]

    Berrada T, Frank S, Bücker R, Schumm T, Schaff J, Schmiedmayer J 2013 Nat. Commun. 4 2077Google Scholar

    [44]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [45]

    Fröwis F, Sekatski P, Dür W 2016 Phys. Rev. Lett. 116 090801Google Scholar

    [46]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K, Oberthaler M 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [47]

    Hosten O, Krishnakumar R, Engelsen N, Kasevich M 2016 Science 352 1552Google Scholar

    [48]

    Lee C 2006 Phys. Rev. Lett. 97 150402Google Scholar

    [49]

    Lee C 2009 Phys. Rev. Lett. 102 070401Google Scholar

    [50]

    Hu Y, Feng M, Lee C 2012 Phys. Rev. A 85 043604Google Scholar

    [51]

    Luo C, Huang J, Zhang X, Lee C 2017 Phys. Rev. A 95 023608Google Scholar

    [52]

    Zhuang M, Huang J, Lee C 2018 Phys. Rev. A 98 033603Google Scholar

    [53]

    Ma J, Huang Y, Wang X, Sun C 2011 Phys. Rev. A 84 039907Google Scholar

    [54]

    You L 2003 Phys. Rev. Lett. 90 030402Google Scholar

    [55]

    Huang J, Qin X, Zhong H, Ke Y, Lee C 2015 Sci. Rep. 5 17894

    [56]

    Huang J, Zhuang M, Lu B, Ke Y, Lee C 2018 Phys. Rev. A 98 012129Google Scholar

    [57]

    Lau H, Dutton Z, Wang T, Simon C 2014 Phys. Rev. Lett. 113 090401Google Scholar

    [58]

    Dooley S, Spiller T P 2014 Phys. Rev. A 90 012320Google Scholar

    [59]

    Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W, Saito S 2015 Phys. Rev. Lett. 115 170801Google Scholar

    [60]

    Molmer K, Sorensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [61]

    Bhaktavatsala Rao D, Bar-Gill N, Kurizki G 2011 Phys. Rev. Lett. 106 010404Google Scholar

    [62]

    Gerry C, Grobe R 1997 Phys. Rev. A 56 2390Google Scholar

    [63]

    Gerry C, Grobe R 1998 Phys. Rev. A 57 2247Google Scholar

    [64]

    Recamier J, Castanos O, Jauregui R, Frank A 2000 Phys. Rev. A 61 063808Google Scholar

    [65]

    Inoue R, Tanaka S, Namiki R, Sagawa T, Takahashi Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [66]

    Opatrny T, Molmer K 2012 Phys. Rev. A 86 023845Google Scholar

    [67]

    Kok P, Lee H, Dowling J 2002 Phys. Rev. A 65 052104Google Scholar

    [68]

    Nielsen A, Molmer K 2007 Phys. Rev. A 75 063803Google Scholar

    [69]

    Chen Y, Bao X, Yuan Z, Chen S, Zhao B, Pan J 2010 Phys. Rev. Lett. 104 043601Google Scholar

    [70]

    Lombardo D, Twamley J 2015 Sci. Rep. 5 13884Google Scholar

    [71]

    Signoles A, Facon A, Grosso D, Dotsenko I, Haroche S, Raimond J, Brune M, Gleyzes S 2014 Nat. Phys. 10 715Google Scholar

    [72]

    Huang J, Zhuang M, Lee C 2018 Phys. Rev. A 97 032116Google Scholar

    [73]

    Lee C, Fu L, Kivshar Y 2008 EPL 81 60006Google Scholar

    [74]

    Xing H, Wang A, Tan Q, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [75]

    Yukawa E, Milburn G, Nemoto K 2018 Phys. Rev. A 97 013820Google Scholar

    [76]

    Hatomura T 2018 New J. Phys. 20 015010Google Scholar

    [77]

    Dunningham J, Burnett K 2004 Phys. Rev. A 70 033601Google Scholar

    [78]

    Campos R, Gerry C, Benmoussa A 2003 Phys. Rev. A 68 023810Google Scholar

    [79]

    Savas D, Peter W G, Jason M H, Mark A K 2008 Phys. Rev. D 78 122002Google Scholar

    [80]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [81]

    Helm J, Billam T, Rakonjac A, Cornish S, Gardiner S 2018 Phys. Rev. Lett. 120 063201Google Scholar

    [82]

    Nolan S, Sabbatini J, Bromley M, Davis M, Haine S 2016 Phys. Rev. A 93 023616Google Scholar

    [83]

    Kessler E, Kómár P, Bishof M, Jiang L, Sørensen A, Ye J, Lukin M 2014 Phys. Rev. Lett. 112 190403Google Scholar

    [84]

    Dorner U 2012 New J. Phys. 14 043011Google Scholar

    [85]

    Weinstein J, Beloy K, Derevianko A 2010 Phys. Rev. A 81 030302(R)Google Scholar

  • 图 1  自旋相干态(左)与自旋压缩态(右)在广义Bloch球上的Husimi分布(摘自文献[39])

    Fig. 1.  The Husimi distribution of spin coherent state (left) and spin squeezed state (right) on the generalized Bloch sphere. Adapted from Ref. [39].

    图 2  上图为不同自旋猫态在广义Bloch球上的Husimi分布; 下图为不同自旋猫态在有原子数损失($\eta $为原子的损失率)情况下的相位测量精度极限(摘自文献[55])

    Fig. 2.  Top: The Husimi distribution of different spin cat states on the generalized Bloch sphere. Bottom: The ultimate phase measurement precision with different spin cat states under atomic loss ($\eta $ denotes the ratio of atom loss). Adapted from Ref. [55].

    图 3  基于量子相变和多体量子干涉的相位测量方案示意图( 摘自文献[61])

    Fig. 3.  Schematic of precision phase measurement based on driving through quantum phase transitions and many-body quantum interferometry. Adapted from Ref. [61].

    图 4  (a)旋量BEC的基态由单原子内态的二阶塞曼效应和BEC中自旋交换作用强度的大小决定, 会出现两个相变点, 将相图分为三个区域, 分别为P, BA和TF相; (b)线性扫描q时, 通过吸收成像观察到的BEC在各个内态上的分布随时间的变化(摘自文献[35])

    Fig. 4.  (a) The thick black solid line denotes the gap $\Delta $ between the first excited and the ground state of Hamiltonian, which together with the two minima at q = ±2|c2| defines three quantum phases, illustrated by their atom distributions in the three spin components, the first-order Zeeman shifts are not shown because they are inconsequential for a system with zero magnetization; (b) absorption images of atoms in the three spin components after Stern-Gerlach separation, showing efficient conversion of a condensate from a polar state into a TFS by sweeping q linearly from 3|c2| to –3|c2| in 3 s. Adapted from Ref. [35].

  • [1]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [3]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [4]

    Pezzè L, Smerzi A, Oberthaler M, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [5]

    Zhou L, Long S, Tang B, Chen X, Gao F, Peng W, Duan W, Zhong J, Xiong Z, Wang J, Zhang Y, Zhan M 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [6]

    Williams J, Chiow S, Yu N, Müller H 2016 New J. Phys. 18 025018Google Scholar

    [7]

    Dickerson S, Hogan J, Sugarbaker A, Johnson D, Kasevich M 2013 Phys. Rev. Lett. 111 083001Google Scholar

    [8]

    Graham P, Hogan J, Kasevich M, Rajendran S 2013 Phys. Rev. Lett. 110 171102Google Scholar

    [9]

    Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D, Bongs K, Dittus H, Duncker H, Gaaloul N, Gherasim C, Giese E, Grzeschik C, Hänsch T, Hellmig O, Herr W, Herrmann S, Kajari E, Kleinert S, Lämmerzahl C, Lewoczko-Adamczyk W, Malcolm J, Meyer N, Nolte R, Peters A, Popp M, Reichel J, Roura A, Rudolph J, Schiemangk M, Schneider M, Seidel S, Sengstock K, Tamma V, Valenzuela T, Vogel A, Walser R, Wendrich T, Windpassinger P, Zeller W, Zoest T, Ertmer W, Schleich W, Rasel E 2013 Phys. Rev. Lett. 110 093602Google Scholar

    [10]

    Dolde F, Fedder H, Doherty M, Nöbauer T, Rempp F, Balsubramanian G, Wolf T, Reinhard F, Hollenberg L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [11]

    Cooper J, Hallwood D, Dunningham J 2010 Phys. Rev. A 81 043624Google Scholar

    [12]

    Boto A, Kok P, Abrams D, Braunstein S, Williams C, Dowling J 2000 Phys. Rev. Lett. 85 2733Google Scholar

    [13]

    Ockeloen C, Schmied R, Riedel M, Treutlein P 2013 Phys. Rev. Lett. 111 143001Google Scholar

    [14]

    Georgescu I 2014 Nat. Phys. 10 474Google Scholar

    [15]

    Wasilewski W, Jensen K, Krauter H, Renema J, Balabas M, Polzik E 2010 Phys. Rev. Lett. 104 133601Google Scholar

    [16]

    Ke Y, Huang J, Zhuang M, Lu B, Lee C 2018 Phys. Rev. A 98 053826Google Scholar

    [17]

    Riedel M, Böhi P, Li Y, Hänsch T, Sinatra A, Treutlein P 2010 Nature 461 1170

    [18]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M 2010 Nature 464 1165Google Scholar

    [19]

    Wineland D 2013 Rev. Mod. Phys. 85 1103Google Scholar

    [20]

    Blatt R, Wineland D 2008 Nature 453 1008Google Scholar

    [21]

    Leibfried D, DeMarco B, Meyer V, Rowe M, Ben-Kish A, Britton J, Itano W, Jelenković B, Langer C, Rosenband T, Wineland D 2002 Phys. Rev. Lett. 89 247901Google Scholar

    [22]

    Huver S, Wildfeuer C, Dowling J 2008 Phys. Rev. A 78 063828Google Scholar

    [23]

    Afek I, Ambar O, Silberberg Y 2010 Science 328 879Google Scholar

    [24]

    Fang K, Acosta V, Santori C, Huang Z, Itoh K, Watanabe H, Shikata S, Beausoleil R 2013 Phys. Rev. Lett. 110 130802Google Scholar

    [25]

    Simmons S, Jones J, Karlen S, Ardavan A, Morton J 2010 Phys. Rev. A 82 022330Google Scholar

    [26]

    Nie X, Huang J, Li Z, Zheng W, Lee C, Peng X, Du J 2018 Sci. Bull. 63 469Google Scholar

    [27]

    Nie X, Li J, Cui J, Luo Z, Huang J, Chen H, Lee C, Peng X, Du J 2015 New J. Phys. 17 053028Google Scholar

    [28]

    Pham L, Bar-Gill N, Belthangady C, Le Sage D, Cappellaro P, Lukin M, Yacoby A, Walsworth R 2012 Phys. Rev. B 86 045214Google Scholar

    [29]

    Demkowicz-Dobrzański R, Kołodyński J, Guţă M 2012 Nat. Commun. 3 1063Google Scholar

    [30]

    Escher B, de Matos Filho R, Davidovich L 2011 Nat. Phys. 7 406Google Scholar

    [31]

    Braunstein S 1992 Phys. Rev. Lett. 69 3598Google Scholar

    [32]

    Braunstein S, Caves C 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [33]

    Huang J, Wu S, Zhong H, Lee C 2014 Annual Review of Cold Atoms and Molecules (Vol. 2) (World Scientific) p365

    [34]

    Lücke B, Scherer M, Kruse J, Pezzé L, Deuretzbacher F, Hyllus P, Topic O, Peise J, Ertmer W, Arlt J, Santos L, Smerzi A, Klempt C 2011 Science 334 773Google Scholar

    [35]

    Luo X, Zou Y, Wu L, Liu Q, Han M, Tey M, You L 2017 Science 355 620Google Scholar

    [36]

    Zou Y, Wu L, Liu Q, Luo X, Guo S, Cao J, Tey M, You L 2018 PNAS 115 6381Google Scholar

    [37]

    Strobel H, Muessel W, Linnemann D, Zibold T, Hume D, Pezzè L, Smerzi A, Oberthaler M 2014 Science 345 424Google Scholar

    [38]

    Wang X, Sanders B 2001 Phys. Rev. A 65 012303Google Scholar

    [39]

    Ma J, Wang X, Sun C, Nori F 2011 Phys. Rep. 509 89Google Scholar

    [40]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138Google Scholar

    [41]

    Lee C, Huang J, Deng H, Dai H, Xu J 2012 Front. Phys. 7 109Google Scholar

    [42]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M 2008 Nature 455 1216Google Scholar

    [43]

    Berrada T, Frank S, Bücker R, Schumm T, Schaff J, Schmiedmayer J 2013 Nat. Commun. 4 2077Google Scholar

    [44]

    Davis E, Bentsen G, Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601Google Scholar

    [45]

    Fröwis F, Sekatski P, Dür W 2016 Phys. Rev. Lett. 116 090801Google Scholar

    [46]

    Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K, Oberthaler M 2016 Phys. Rev. Lett. 117 013001Google Scholar

    [47]

    Hosten O, Krishnakumar R, Engelsen N, Kasevich M 2016 Science 352 1552Google Scholar

    [48]

    Lee C 2006 Phys. Rev. Lett. 97 150402Google Scholar

    [49]

    Lee C 2009 Phys. Rev. Lett. 102 070401Google Scholar

    [50]

    Hu Y, Feng M, Lee C 2012 Phys. Rev. A 85 043604Google Scholar

    [51]

    Luo C, Huang J, Zhang X, Lee C 2017 Phys. Rev. A 95 023608Google Scholar

    [52]

    Zhuang M, Huang J, Lee C 2018 Phys. Rev. A 98 033603Google Scholar

    [53]

    Ma J, Huang Y, Wang X, Sun C 2011 Phys. Rev. A 84 039907Google Scholar

    [54]

    You L 2003 Phys. Rev. Lett. 90 030402Google Scholar

    [55]

    Huang J, Qin X, Zhong H, Ke Y, Lee C 2015 Sci. Rep. 5 17894

    [56]

    Huang J, Zhuang M, Lu B, Ke Y, Lee C 2018 Phys. Rev. A 98 012129Google Scholar

    [57]

    Lau H, Dutton Z, Wang T, Simon C 2014 Phys. Rev. Lett. 113 090401Google Scholar

    [58]

    Dooley S, Spiller T P 2014 Phys. Rev. A 90 012320Google Scholar

    [59]

    Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro W, Saito S 2015 Phys. Rev. Lett. 115 170801Google Scholar

    [60]

    Molmer K, Sorensen A 1999 Phys. Rev. Lett. 82 1835Google Scholar

    [61]

    Bhaktavatsala Rao D, Bar-Gill N, Kurizki G 2011 Phys. Rev. Lett. 106 010404Google Scholar

    [62]

    Gerry C, Grobe R 1997 Phys. Rev. A 56 2390Google Scholar

    [63]

    Gerry C, Grobe R 1998 Phys. Rev. A 57 2247Google Scholar

    [64]

    Recamier J, Castanos O, Jauregui R, Frank A 2000 Phys. Rev. A 61 063808Google Scholar

    [65]

    Inoue R, Tanaka S, Namiki R, Sagawa T, Takahashi Y 2013 Phys. Rev. Lett. 110 163602Google Scholar

    [66]

    Opatrny T, Molmer K 2012 Phys. Rev. A 86 023845Google Scholar

    [67]

    Kok P, Lee H, Dowling J 2002 Phys. Rev. A 65 052104Google Scholar

    [68]

    Nielsen A, Molmer K 2007 Phys. Rev. A 75 063803Google Scholar

    [69]

    Chen Y, Bao X, Yuan Z, Chen S, Zhao B, Pan J 2010 Phys. Rev. Lett. 104 043601Google Scholar

    [70]

    Lombardo D, Twamley J 2015 Sci. Rep. 5 13884Google Scholar

    [71]

    Signoles A, Facon A, Grosso D, Dotsenko I, Haroche S, Raimond J, Brune M, Gleyzes S 2014 Nat. Phys. 10 715Google Scholar

    [72]

    Huang J, Zhuang M, Lee C 2018 Phys. Rev. A 97 032116Google Scholar

    [73]

    Lee C, Fu L, Kivshar Y 2008 EPL 81 60006Google Scholar

    [74]

    Xing H, Wang A, Tan Q, Zhang W, Yi S 2016 Phys. Rev. A 93 043615Google Scholar

    [75]

    Yukawa E, Milburn G, Nemoto K 2018 Phys. Rev. A 97 013820Google Scholar

    [76]

    Hatomura T 2018 New J. Phys. 20 015010Google Scholar

    [77]

    Dunningham J, Burnett K 2004 Phys. Rev. A 70 033601Google Scholar

    [78]

    Campos R, Gerry C, Benmoussa A 2003 Phys. Rev. A 68 023810Google Scholar

    [79]

    Savas D, Peter W G, Jason M H, Mark A K 2008 Phys. Rev. D 78 122002Google Scholar

    [80]

    Auzinsh M, Budker D, Kimball D F, Rochester S M, Stalnaker J E 2004 Phys. Rev. Lett. 93 173002Google Scholar

    [81]

    Helm J, Billam T, Rakonjac A, Cornish S, Gardiner S 2018 Phys. Rev. Lett. 120 063201Google Scholar

    [82]

    Nolan S, Sabbatini J, Bromley M, Davis M, Haine S 2016 Phys. Rev. A 93 023616Google Scholar

    [83]

    Kessler E, Kómár P, Bishof M, Jiang L, Sørensen A, Ye J, Lukin M 2014 Phys. Rev. Lett. 112 190403Google Scholar

    [84]

    Dorner U 2012 New J. Phys. 14 043011Google Scholar

    [85]

    Weinstein J, Beloy K, Derevianko A 2010 Phys. Rev. A 81 030302(R)Google Scholar

  • [1] 何院耀, 杨兵. 基于哈伯德模型的超冷原子量子模拟研究进展. 物理学报, 2025, 74(1): 017101. doi: 10.7498/aps.74.20241595
    [2] 王恩龙, 王国超, 朱凌晓, 卞进田, 莫小娟, 孔辉. 一种面向原子干涉仪均匀量子非破坏测量的光学环形腔. 物理学报, 2025, 74(3): 033701. doi: 10.7498/aps.74.20241348
    [3] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [4] 潘建伟. 量子信息科技的发展现状与展望. 物理学报, 2024, 73(1): 010301. doi: 10.7498/aps.73.20231795
    [5] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [6] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [7] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [8] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [9] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展. 物理学报, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211348
    [11] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [12] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [13] 王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇. 用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制. 物理学报, 2018, 67(10): 108501. doi: 10.7498/aps.67.20172643
    [14] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量. 物理学报, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [15] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [16] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [17] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案. 物理学报, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [18] 马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子纯长程态转动常数的精密测量. 物理学报, 2013, 62(22): 223301. doi: 10.7498/aps.62.223301
    [19] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [20] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
计量
  • 文章访问数:  12219
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-26
  • 修回日期:  2019-02-20
  • 上网日期:  2019-02-19
  • 刊出日期:  2019-02-20

/

返回文章
返回