-
Fermi-Hubbard model is a fundamental lattice model for describing correlated electron systems in condensed matter physics, with a profound connection to high-temperature superconductivity. In recent years, quantum simulation with cold atoms has emerged as an important paradigm for studying the Fermi-Hubbard model, while advancements in quantum many-body computations have contributed to our understanding of its fundamental properties. Notably, a recent ultracold-atom experiment achieved the celebrated antiferromagnetic (AFM) phase transition in the three-dimensional (3D) Hubbard model, representing a crucial step in quantum simulation that establishes a foundation for exploring the connection between the quantum magnetism and high-temperature superconductivity. This paper reviews both the experimental and theoretical progress in studying the Fermi-Hubbard model, focusing primarily on 3D systems, discusses the history and current state of developments, and outlines future directions in this field.
The paper is organized as follows. We begin with a review of recent progress in observing AFM phase transitions in the 3D Hubbard model, focusing on an ultracold-atom experiment conducted by the research group at the University of Science and Technology of China (USTC). Next, we provide a theoretical introduction to the fundamental properties of the 3D Hubbard model. This includes a summary of prior theoretical studies, an overview of the current research landscape, and a discussion of unresolved or under-explored issues. In the third section, we discuss the quantum simulation of the Hubbard model using ultracold atoms in optical lattices, outlining the basic principle, historical developments and key challenges. The USTC team overcame these challenges with innovative techniques such as atom cooling, large-scale uniform box traps, and precise measurements of the AFM structure factor. Their work successfully confirmed the AFM phase transition via the critical scaling analysis. Finally, we highlight the significance of this achievement and discuss future research prospects for the 3D Hubbard model, including experimental studies on the doped regime and related theoretical benchmarks.-
Keywords:
- Fermi-Hubbard model /
- Quantum Simulation based on ultracold atoms /
- quantum many-body computation /
- antiferromagnetic phase transition
-
[1] H.-J. Shao, Y.-X. Wang, D.-Z. Zhu, Y.-S. Zhu, H.-N. Sun, S.-Y. Chen, C. Zhang, Z.-J. Fan, Y. Deng, X.-C. Yao, Y.-A. Chen, and J.-W. Pan, Antiferromagnetic phase transition in a 3d fermionic Hubbard model, Nature 632, 267(2024).
[2] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The Hubbard model, Annual Review of Condensed Matter Physics 13, 239(2022).
[3] M. Qin, T. Schäfer, S. Andergassen, P. Corboz, and E. Gull, The Hubbard model: A computational perspective, Annual Review of Condensed Matter Physics 13, 275(2022).
[4] J. Hubbard and B. H. Flowers, Electron correlations in narrow energy bands, Proc. R. Soc. Lond. Ser. A 276, 238(1963).
[5] J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys 30, 275(1963).
[6] M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159(1963).
[7] Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, and K. Levin, When superconductivity crosses over: From BCS to BEC, Rev. Mod. Phys. 96, 025002(2024).
[8] Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. & Vicari, E. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B 65, 144520(2002).
[9] N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133(1966).
[10] R. Staudt, M. Dzierzawa, and A. Muramatsu, Phase diagram of the three-dimensional Hubbard model at half filling, The European Physical Journal B 17, 411(2000).
[11] E. Ibarra-Garcxıa-Padilla, R. Mukherjee, R. G. Hulet, K. R. A. Hazzard, T. Paiva, and R. T. Scalettar, Thermodynamics and magnetism in the two-dimensional to three-dimensional crossover of the Hubbard model, Phys. Rev. A 102, 033340(2020).
[12] F. Sun and X. Y. Xu, Boosting determinant quantum Monte Carlo with submatrix updates: Unveiling the phase diagram of the 3D Hubbard model, arXiv: 2404.09989.
[13] Y.-F. Song, Y. Deng, and Y.-Y. He, Extended metal-insulator crossover with strong antiferromagnetic spin correlation in half-filled 3d Hubbard model, arXiv: 2404.08745; Magnetic, thermodynamic and dynamical properties of the three-dimensional fermionic Hubbard model: a comprehensive Monte Carlo study, arXiv: 2407.08603.
[14] F. Werner, O. Parcollet, A. Georges, and S. R. Hassan, Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices, Phys. Rev. Lett. 95, 056401(2005).
[15] S. Fuchs, E. Gull, M. Troyer, M. Jarrell, and T. Pruschke, Spectral properties of the three-dimensional Hubbard model, Phys. Rev. B 83, 235113(2011).
[16] T. Schäfer, A. A. Katanin, K. Held, and A. Toschi, Interplay of correlations and Kohn anomalies in three dimensions: Quantum criticality with a twist, Phys. Rev. Lett. 119, 046402(2017).
[17] Liam Rampon, Fedor Simkovic, and Michel Ferrero1, Magnetic phase diagram of the three-dimensional doped Hubbard model, arXiv:2409.08848.
[18] E. Kozik, E. Burovski, V. W. Scarola, and M. Troyer, Nxeel temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo, Phys. Rev. B 87, 205102(2013).
[19] C. Lenihan, A. J. Kim, F. Simkovic, and E. Kozik, Evaluating second-order phase transitions with diagrammatic Monte Carlo: Nxeel transition in the doped three-dimensional Hubbard model, Phys. Rev. Lett. 129,107202(2022).
[20] R. Garioud, F. Simkovic, R. Rossi, G. Spada, T. Schäfer, F. Werner, and M. Ferrero, Symmetry-broken perturbation theory to large orders in antiferromagnetic phases, Phys. Rev. Lett. 132, 246505(2024).
[21] Y.-Y. He, M. Qin, H. Shi, Z.-Y. Lu, and S. Zhang, Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures, Phys. Rev. B 99, 045108(2019).
[22] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan, Stripe order in the underdoped region of the two-dimensional Hubbard model, Science 358, 1155(2017).
[23] H. Xu, C.-M. Chung, M. Qin, U. Schollwöck, S. R. White, and S. Zhang, Coexistence of superconductivity with partially filled stripes in the Hubbard model, Science 384, eadh7691(2024).
[24] Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467-488(1982).
[25] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198-201(1995).
[26] Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108(1998).
[27] DeMarco, B. & Jin, D. S. Onset of Fermi Degeneracy in a Trapped Atomic Gas. Science 285, 1703-1706(1999).
[28] Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39-44(2002).
[29] Jordens, R., Strohmaier, N., Gunter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204-207(2008).
[30] Schneider, U. et al. Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice. Science 322, 1520-1525(2008).
[31] Tin-Lun Ho, Q. Zhou. Universal Cooling Scheme for Quantum Simulation. arXiv:0911.5506(2009).
[32] Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17-85(2006).
[33] Duan, L. M., Demler, E. & Lukin, M. D. Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 91, 090402(2003).
[34] Trotzky, S. et al. Time-resolved observation and control of super-exchange interactions with ultracold atoms in optical lattices. Science 319, 295-299(2008).
[35] Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74-77(2009).
[36] Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738-742(2015).
[37] Greif, D. et al. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953-957(2016).
[38] Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211-214(2015).
[39] Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462-466(2017).
[40] Yang, B. et al. Cooling and entangling ultracold atoms in optical lattices. Science 369, 550-553(2020).
[41] Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990-994(2021).
计量
- 文章访问数: 135
- PDF下载量: 13
- 被引次数: 0