搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于哈伯德模型的超冷原子量子模拟研究进展

何院耀 杨兵

引用本文:
Citation:

基于哈伯德模型的超冷原子量子模拟研究进展

何院耀, 杨兵

Recent Progress on Ultracold-atom Quantum Simulation of Fermi-Hubbard model

Yuan-Yao He, Bing Yang
PDF
导出引用
  • 费米-哈伯德模型是描述凝聚态物理中关联电子体系的基础模型,与高温超导现象有着深刻联系。近年来,超冷原子量子模拟已成为研究该模型的重要范式,而同时多体数值计算在该模型基础物理性质的研究方面也取得了重要进展。特别地,最近超冷原子实验观测到三维哈伯德模型中的反铁磁相变,是费米-哈伯德模型量子模拟的重要一步,为理解量子磁性与高温超导之间的联系奠定了基础。本文回顾费米-哈伯德模型的理论与实验研究进展,侧重于三维体系,并讨论实验的发展历程和现状,展望未来的发展趋势。
    Fermi-Hubbard model is a fundamental lattice model for describing correlated electron systems in condensed matter physics, with a profound connection to high-temperature superconductivity. In recent years, quantum simulation with cold atoms has emerged as an important paradigm for studying the Fermi-Hubbard model, while advancements in quantum many-body computations have contributed to our understanding of its fundamental properties. Notably, a recent ultracold-atom experiment achieved the celebrated antiferromagnetic (AFM) phase transition in the three-dimensional (3D) Hubbard model, representing a crucial step in quantum simulation that establishes a foundation for exploring the connection between the quantum magnetism and high-temperature superconductivity. This paper reviews both the experimental and theoretical progress in studying the Fermi-Hubbard model, focusing primarily on 3D systems, discusses the history and current state of developments, and outlines future directions in this field.
    The paper is organized as follows. We begin with a review of recent progress in observing AFM phase transitions in the 3D Hubbard model, focusing on an ultracold-atom experiment conducted by the research group at the University of Science and Technology of China (USTC). Next, we provide a theoretical introduction to the fundamental properties of the 3D Hubbard model. This includes a summary of prior theoretical studies, an overview of the current research landscape, and a discussion of unresolved or under-explored issues. In the third section, we discuss the quantum simulation of the Hubbard model using ultracold atoms in optical lattices, outlining the basic principle, historical developments and key challenges. The USTC team overcame these challenges with innovative techniques such as atom cooling, large-scale uniform box traps, and precise measurements of the AFM structure factor. Their work successfully confirmed the AFM phase transition via the critical scaling analysis. Finally, we highlight the significance of this achievement and discuss future research prospects for the 3D Hubbard model, including experimental studies on the doped regime and related theoretical benchmarks.
  • [1]

    H.-J. Shao, Y.-X. Wang, D.-Z. Zhu, Y.-S. Zhu, H.-N. Sun, S.-Y. Chen, C. Zhang, Z.-J. Fan, Y. Deng, X.-C. Yao, Y.-A. Chen, and J.-W. Pan, Antiferromagnetic phase transition in a 3d fermionic Hubbard model, Nature 632, 267(2024).

    [2]

    D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The Hubbard model, Annual Review of Condensed Matter Physics 13, 239(2022).

    [3]

    M. Qin, T. Schäfer, S. Andergassen, P. Corboz, and E. Gull, The Hubbard model: A computational perspective, Annual Review of Condensed Matter Physics 13, 275(2022).

    [4]

    J. Hubbard and B. H. Flowers, Electron correlations in narrow energy bands, Proc. R. Soc. Lond. Ser. A 276, 238(1963).

    [5]

    J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys 30, 275(1963).

    [6]

    M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159(1963).

    [7]

    Qijin Chen, Zhiqiang Wang, Rufus Boyack, Shuolong Yang, and K. Levin, When superconductivity crosses over: From BCS to BEC, Rev. Mod. Phys. 96, 025002(2024).

    [8]

    Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P. & Vicari, E. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B 65, 144520(2002).

    [9]

    N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133(1966).

    [10]

    R. Staudt, M. Dzierzawa, and A. Muramatsu, Phase diagram of the three-dimensional Hubbard model at half filling, The European Physical Journal B 17, 411(2000).

    [11]

    E. Ibarra-Garcxıa-Padilla, R. Mukherjee, R. G. Hulet, K. R. A. Hazzard, T. Paiva, and R. T. Scalettar, Thermodynamics and magnetism in the two-dimensional to three-dimensional crossover of the Hubbard model, Phys. Rev. A 102, 033340(2020).

    [12]

    F. Sun and X. Y. Xu, Boosting determinant quantum Monte Carlo with submatrix updates: Unveiling the phase diagram of the 3D Hubbard model, arXiv: 2404.09989.

    [13]

    Y.-F. Song, Y. Deng, and Y.-Y. He, Extended metal-insulator crossover with strong antiferromagnetic spin correlation in half-filled 3d Hubbard model, arXiv: 2404.08745; Magnetic, thermodynamic and dynamical properties of the three-dimensional fermionic Hubbard model: a comprehensive Monte Carlo study, arXiv: 2407.08603.

    [14]

    F. Werner, O. Parcollet, A. Georges, and S. R. Hassan, Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices, Phys. Rev. Lett. 95, 056401(2005).

    [15]

    S. Fuchs, E. Gull, M. Troyer, M. Jarrell, and T. Pruschke, Spectral properties of the three-dimensional Hubbard model, Phys. Rev. B 83, 235113(2011).

    [16]

    T. Schäfer, A. A. Katanin, K. Held, and A. Toschi, Interplay of correlations and Kohn anomalies in three dimensions: Quantum criticality with a twist, Phys. Rev. Lett. 119, 046402(2017).

    [17]

    Liam Rampon, Fedor Simkovic, and Michel Ferrero1, Magnetic phase diagram of the three-dimensional doped Hubbard model, arXiv:2409.08848.

    [18]

    E. Kozik, E. Burovski, V. W. Scarola, and M. Troyer, Nxeel temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo, Phys. Rev. B 87, 205102(2013).

    [19]

    C. Lenihan, A. J. Kim, F. Simkovic, and E. Kozik, Evaluating second-order phase transitions with diagrammatic Monte Carlo: Nxeel transition in the doped three-dimensional Hubbard model, Phys. Rev. Lett. 129,107202(2022).

    [20]

    R. Garioud, F. Simkovic, R. Rossi, G. Spada, T. Schäfer, F. Werner, and M. Ferrero, Symmetry-broken perturbation theory to large orders in antiferromagnetic phases, Phys. Rev. Lett. 132, 246505(2024).

    [21]

    Y.-Y. He, M. Qin, H. Shi, Z.-Y. Lu, and S. Zhang, Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures, Phys. Rev. B 99, 045108(2019).

    [22]

    B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan, Stripe order in the underdoped region of the two-dimensional Hubbard model, Science 358, 1155(2017).

    [23]

    H. Xu, C.-M. Chung, M. Qin, U. Schollwöck, S. R. White, and S. Zhang, Coexistence of superconductivity with partially filled stripes in the Hubbard model, Science 384, eadh7691(2024).

    [24]

    Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467-488(1982).

    [25]

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198-201(1995).

    [26]

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108(1998).

    [27]

    DeMarco, B. & Jin, D. S. Onset of Fermi Degeneracy in a Trapped Atomic Gas. Science 285, 1703-1706(1999).

    [28]

    Greiner, M., Mandel, O., Esslinger, T., Hansch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39-44(2002).

    [29]

    Jordens, R., Strohmaier, N., Gunter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204-207(2008).

    [30]

    Schneider, U. et al. Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice. Science 322, 1520-1525(2008).

    [31]

    Tin-Lun Ho, Q. Zhou. Universal Cooling Scheme for Quantum Simulation. arXiv:0911.5506(2009).

    [32]

    Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17-85(2006).

    [33]

    Duan, L. M., Demler, E. & Lukin, M. D. Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett. 91, 090402(2003).

    [34]

    Trotzky, S. et al. Time-resolved observation and control of super-exchange interactions with ultracold atoms in optical lattices. Science 319, 295-299(2008).

    [35]

    Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74-77(2009).

    [36]

    Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738-742(2015).

    [37]

    Greif, D. et al. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953-957(2016).

    [38]

    Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211-214(2015).

    [39]

    Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462-466(2017).

    [40]

    Yang, B. et al. Cooling and entangling ultracold atoms in optical lattices. Science 369, 550-553(2020).

    [41]

    Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990-994(2021).

  • [1] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, doi: 10.7498/aps.72.20230901
    [2] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, doi: 10.7498/aps.72.20230701
    [3] 刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会. 锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象. 物理学报, doi: 10.7498/aps.72.20221761
    [4] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, doi: 10.7498/aps.70.20210778
    [5] 许鹏, 何晓东, 刘敏, 王谨, 詹明生. 中性原子量子计算研究进展. 物理学报, doi: 10.7498/aps.68.20182133
    [6] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, doi: 10.7498/aps.67.20181393
    [7] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, doi: 10.7498/aps.67.20172433
    [8] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, doi: 10.7498/aps.64.247502
    [9] 郑晓军, 张俊, 黄忠兵. 扩展哈伯德模型中原子团簇的结构和热力学性质研究. 物理学报, doi: 10.7498/aps.59.3897
    [10] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, doi: 10.7498/aps.58.4976
    [11] 类维平, 贾 城, 王选章. 涡流对侧向反铁磁/非磁超晶格表面推迟模的影响. 物理学报, doi: 10.7498/aps.57.535
    [12] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, doi: 10.7498/aps.57.2409
    [13] 金 硕, 解炳昊. 外磁场中海森伯反铁磁模型的代数结构和压缩态解. 物理学报, doi: 10.7498/aps.55.3880
    [14] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, doi: 10.7498/aps.54.4359
    [15] 王治国, 丁国辉, 许伯威. 反铁磁链的自旋Peierls相变. 物理学报, doi: 10.7498/aps.48.296
    [16] 余登科, 顾 强, 汪汉廷, 沈觉涟. 双层Heisenberg反铁磁体中的量子相变. 物理学报, doi: 10.7498/aps.48.169
    [17] 黄东, 翁永刚. 一种具有铁磁与反铁磁相互作用Ising模型的热力学性质. 物理学报, doi: 10.7498/aps.43.1172
    [18] 应和平, 季达人. 一种有效的量子Monte Carlo模拟方法及其关于二维反铁磁Heisenberg模型的研究. 物理学报, doi: 10.7498/aps.42.1845
    [19] 杜安, 魏国柱, 聂惠权. 高Tc超导体的反铁磁理论计算. 物理学报, doi: 10.7498/aps.41.1686
    [20] 钟健. Heisenberg反铁磁超晶格的自旋波. 物理学报, doi: 10.7498/aps.39.486
计量
  • 文章访问数:  135
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-09

/

返回文章
返回