-
非弹性中子散射谱是材料科学和物理学研究中的关键工具, 其通过观测中子与物质相互作用后的能量和动量变化, 揭示材料的微观动力学特性. 该技术为定量描述材料的声子色散和磁性激发提供了重要信息. 非弹性中子散射谱仪根据单色中子的选择方法, 可分为三轴谱仪和飞行时间谱仪. 三轴谱仪具有高信噪比、高灵活性, 并且对特定测量点能进行精确追踪; 而飞行时间谱仪则通过多种手段显著提升实验效率. 非弹性中子散射谱仪的应用范围相当广泛, 在磁性、超导、热电、催化等诸多材料的机理研究方面, 均体现出其在推动前沿科学发展中的不可或缺性. 中国散裂中子源的高能非弹性谱仪是国内首台飞行时间中子非弹性谱仪, 凭借其创新的费米斩波器设计, 成功实现了高分辨率与多能量的共存, 同时实验可用的单束中子支数达到了国际领先水平.
-
关键词:
- 非弹性中子散射 /
- 三轴中子散射谱仪 /
- 飞行时间中子散射谱仪 /
- 费米斩波器
Inelastic neutron scattering is a pivotal technique in materials science and physics research, revealing the microscopic dynamic properties of materials by observing the changes in energy and momentum of neutrons interacting with matter. This technique provides important information for quantitatively describing the phonon dispersion and magnetic excitations of materials. Inelastic neutron scattering spectrometers can be classified into triple-axis spectrometers and time-of-flight spectrometers based on the method of selecting monochromatic neutrons. The former has high signal-to-noise ratio, flexibility, and precise tracking capabilities for specific measurement points, while the latter significantly improves experimental efficiency through various measures. The application of inelastic neutron scattering spectrometers is quite extensive, playing an indispensable role in advancing frontier scientific research in the study of mechanisms in various materials such as magnetism, superconductivity, thermoelectrics, and catalysis. The high-energy inelastic spectrometer at the China Spallation Neutron Source is the first time-of-flight neutron inelastic spectrometer in China, achieving high resolution and multi-energy coexistence with its innovative Fermi chopper design. Additionally, the number of neutron beams available for experiments at this facility is at the forefront internationally.-
Keywords:
- Inelastic neutron scattering /
- triple-axis neutron scattering spectrometer /
- time-of-flight neutron scattering spectrometer /
- Fermi chopper
-
图 1 (a) 三轴谱仪平面图; (b) CMRR的“鲲鹏”冷三轴谱仪[17]; (c) “翠竹”热中子谱仪的构造图[18]; (d) “翠竹”热中子谱仪的照片[19]
Fig. 1. (a) Triple-axis spectrometer plane diagram; (b) The cold triple-axis spectrometer Kunpeng at CMRR[17]; (c) Construction diagram of the thermal triple-axis spectrometer IOP-CIAE[18]; (d) Photograph of the thermal triple-axis spectrometer IOP-CIAE[19].
图 5 通过费米斩波器的中子飞行时间-距离图. 其中虚线表示相邻两支单色中子的能量分析区间存在重叠. 颜色的透明度代表了费米斩波器在该能量的透过率
Fig. 5. The neutron flight time-distance diagram of the Fermi chopper. The dashed lines indicate that there is an overlap in the energy analysis ranges of two adjacent monochromatic neutrons. The transparency of the colors represents the transmission rate of the Fermi chopper at that energy.
图 8 SnS声子色散和动态磁化率$ (\chi''(Q, E)) $随结构相变的演化. (a)—(d)为Pnma相, (e)—(h)为Cmcm相. 在Pnma相中用谐波近似计算的低能色散[51]
Fig. 8. The SnS phonon dispersion and dynamic magnetic susceptibility $ (\chi''(Q, E)) $ evolve with structural phase transitions. (a)–(d) correspond to the Pnma phase, while (e)–(h) correspond to the Cmcm phase. The low-energy dispersion calculated using harmonic approximation in the Pnma phase is shown[51].
图 9 (a)为通过非弹性中子散射测量$ {\mathrm{La}}_3 $$ {\mathrm{Ni}}_2 $$ {\mathrm{O}}_{7-\delta} $的能谱, 强度为低温减去高温数据, (b)为通过自旋波计算得到的自旋激发谱[55]
Fig. 9. The energy spectrum of ${\mathrm{La}}_3 $${\mathrm{Ni}} _2 $${\mathrm{O}} _{7-\delta} $ was measured through inelastic neutron scattering, with intensity being the low-temperature data subtracted from the high-temperature data, (b) The spin excitation spectrum obtained through spin wave calculations[55].
图 10 (a)为通过非弹性中子散射测量的$ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $粉末的磁激发, (b)为$ {\mathrm{PbCuTe}}_2 $${\mathrm{ O}}_6 $单晶的磁激发谱[74].
Fig. 10. (a) The magnetic excitations of ${\mathrm{PbCuTe}} _2 $$ {\mathrm{O}}_6 $ powder measured by inelastic neutron scattering, (b) The magnetic excitation spectrum of $ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $ single crystal[74].
表 1 各个非弹谱仪的参数对比. 其中L1、L2和L3分别为慢化器到费米斩波器的距离、样品到费米斩波器的距离和样品到探测器的距离
Table 1. Parameter comparison of various non-elastic spectrometers. Among them, L1, L2 and L3 are the distance from the moderator to the Fermi chopper, the distance from the sample to the Fermi chopper and the distance from the sample to the detector respectively.
谱仪 HRC 4SEASONS SEQUOIA ARCS MERLIN HD 中子源 J-PARC J-PARC SNS SNS ISIS CSNS 慢化器 DHM CHM DWM DWM DWM DWM Ei(meV) 1$ \sim $2000 5$ \sim $300 8$ \sim $2000 10$ \sim $1500 7$ \sim $2000 10$ \sim $1500 Q(Å-1) — — — 0.15$ \sim $22 — 0.1$ \sim $41.5 水平角度 –31°$ \sim $62° –35°$ \sim $130° –30°$ \sim $60° –28°$ \sim $135° –45°$ \sim $135° –30$ \sim $130°
前期(-30°$ \sim $60°)垂直角度 20°$ \sim $20° –25°$ \sim $27° –18°$ \sim $18° –27°$ \sim $26° –30° $ \sim $30° –30$ \sim $30° 分辨率 >2% >5 % 1%$ \sim $5% 3%$ \sim $5% 4%$ \sim $7% 3%$ \sim $10% L1/L2/L3 14/1/4 16.3/1.7/2.5 18/2/5.53 11.6/2/3$ \sim $3.4 10/1.8.2.5 16/2/2.5 样品尺寸 5*5 cm2 4.5*4.5 cm2
or 2*2 cm25*5 cm2 5*5 cm2 5*5 cm2 5*5 cm2
or 3*3 cm2 -
[1] Rutherford E 1920 Proc. R. Soc. London, Ser. A 97 374Google Scholar
[2] Chadwick J 1932 Nature 129 312
[3] Von Halban H 1936 Acad. Sci. Paris 203 73
[4] Elsasser W 1936 CR Acad. Sci 202 1029
[5] Mitchell D P, Powers P N 1936 Phys. Rev. 50 486
[6] Bloch F 1936 Phys. Rev. 50 259Google Scholar
[7] Alvarez L W, Bloch F 1940 Phys. Rev. 57 111Google Scholar
[8] Shull C G, Smart J S 1949 Phys. Rev. 76 1256
[9] Brockhouse B, Hurst D 1952 Phys. Rev. 88 542Google Scholar
[10] Brockhouse B 1958 Il Nuovo Cimento (1955-1965) 9 45Google Scholar
[11] Besnard M, Dianoux A J, Lalanne P, Lassegues J C 1977 J. Phys. 38 1417Google Scholar
[12] Janik J A 1982 Adv. Liq. Cryst. 5 215
[13] Gaskell P H, Saeed A, Chieux P, Mckenzie D R 1991 Phys. Rev. Lett. 67 1286Google Scholar
[14] Loong C K, Vashishta P, Kalia R K, Degani M H, Zheng Y 1989 Phys. Rev. Lett. 62 2628Google Scholar
[15] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055Google Scholar
[16] Squires G L, Lynn J W 1978 Phys. Today 32 69
[17] Song J M, Luo W, Liu B Q, Li X, Hu B F, Huang C Q, Chen B, Sun G A, Pang B B, Zhang Y, et al 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 968 163929Google Scholar
[18] 李世亮, 戴鹏程 2011 物理 40 33
Li S L, Dai P C 2011 Wuli 40 33
[19] 李天富, 武梅梅, 焦学胜, 孙凯, 陈东风 2020 原子核物理评论 37 364
Li T F, Wu M M, Jiao X S, Sun K, Chen D F 2020 Nucl. Phys. Rev. 37 364
[20] Brockhouse B, Stewart A 1955 Phys. Rev. 100 756Google Scholar
[21] Rodriguez J A, Adler D M, Brand P C, Broholm C, Cook J C, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn J W, Maliszewskyj N C, Moyer J, Orndorff J, Pierce D, Pike T D, Scharfstein G, Smee S A, Vilaseca R 2008 Meas. Sci. Technol. 19 034023Google Scholar
[22] Lynn J, Chen Y, Chang S, Zhao Y, Chi S, W Ratcliff I, Ueland B, Erwin R 2012 J. Res. Natl. Inst. Stand. Technol. 117 61
[23] Boehm M, Hiess A, Kulda J, Roux S, Saroun J 2008 Meas. Sci. and Technol. 19 034024Google Scholar
[24] Jimenez-Ruiz M, Hiess A, Currat R, Kulda J, Bermejo F 2006 Physica B Condens. Matter 385 1086
[25] Wu C M, Deng G, Gardner J, Vorderwisch P, Li W H, Yano S, Peng J C, Imamovic E 2016 J. Instrum. 11 P10009Google Scholar
[26] Danilkin S A, Yethiraj M, Saerbeck T, Klose F, Ulrich C, Fujioka J, Miyasaka S, Tokura Y, Keimer B 2012 J. Phys. Conf. Ser. 340 012003Google Scholar
[27] Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar
[28] Nawa K, Okuyama D, Wu H C, Murasaki R, Matsuzaka S, Kinjo K, Sato T J 2024 J. Phys. Soc. Japan 93 091001Google Scholar
[29] Fischer W 1997 Physica B Condens. Matter 234-236 1202Google Scholar
[30] Stuhr U, Roessli B, Gvasaliya S, Rnnow H, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, C K, Keller P, Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16Google Scholar
[31] Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grünwald A, Georgii R, Hao L, Liu Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 821 17Google Scholar
[32] Demmel F, Fleischmann A, Gläser W 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 416 115Google Scholar
[33] Kempa M, Janousova B, Saroun J, Flores P, Boehm M, Demmel F, Kulda J 2006 Physica B Condens. Matter 385-386 1080Google Scholar
[34] Groitl F, Toft-Petersen R, Quintero-Castro D L, Meng S, Lu Z, Huesges Z, Le M D, Alimov S, Wilpert T, Kiefer K, et al 2017 Sci. Rep. 7 13637Google Scholar
[35] Utschick C, Skoulatos M, Schneidewind A, Böni P 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 837 88Google Scholar
[36] Sobolev O, Hoffmann R, Gibhardt H, Jünke N, Knorr A, Meyer V, Eckold G 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 772 63Google Scholar
[37] Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar
[38] Wang J, Liu J, Xu D, Grünauer F, Hao L, Liu Y, Zhang H, Cheng P, Bao W 2024 Chin. Phys. B 33 057801Google Scholar
[39] Firk F 1979 Nucl. Instrum. Methods 162 539Google Scholar
[40] Yu D, Mole R, Noakes T, Kennedy S, Robinson R 2013 J. Phys. Soc. Japan 82 SA027Google Scholar
[41] Cicognani G, Mutka H, Sacchetti F 2000 Physica B Condens. Matter 276 83
[42] Ollivier J, Mutka H, Didier L 2010 Neutron News 21 22Google Scholar
[43] Kajimoto R, Yokoo T, Nakajima K, Nakamura M, Soyama K, Ino T, Shamoto S, Fujita M, Ohoyama K, Hiraka H, et al 2007 J. Neutron Res. 15 5Google Scholar
[44] Nakajima K, Ohira-Kawamura S, Kikuchi T, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, et al 2011 J. Phys. Soc. Japan 80 SB028Google Scholar
[45] Le M D, Guidi T, Bewley R, Stewart J R, Schooneveld E M, Raspino D, Pooley D E, Boxall J, Gascoyne K F, Rhodes N J, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1056 168646Google Scholar
[46] Bewley R, Eccleston R, McEwen K, Hayden S, Dove M, Bennington S, Treadgold J, Coleman R 2006 Physica B Condens. Matter 385-386 1029Google Scholar
[47] Bewley R, Taylor J, Bennington S 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 637 128Google Scholar
[48] Abernathy D L, Stone M B, Loguillo M, Lucas M, Delaire O, Tang X, Lin J, Fultz B 2012 Rev. Sci. Instrum 83 015114Google Scholar
[49] Ehlers G, Podlesnyak A A, Niedziela J L, Iverson E B, Sokol P E 2011 Rev. Sci. Instrum. 82 085108Google Scholar
[50] Luo W, Feng Y, Liu X, Wang M, Zhu D, Gao W, Geng Y, Ren Q, Shen J, Sun Y, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676Google Scholar
[51] Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, Delaire O 2020 Nat. Commun. 11 4430Google Scholar
[52] Sidis Y, Pailhès S, Hinkov V, Fauquxe B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745Google Scholar
[53] Fujita M, Hiraka H, Matsuda M, Matsuura M, M Tranquada J, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Japan 81 011007Google Scholar
[54] Dai P 2015 Rev. Mod. Phys. 87 855Google Scholar
[55] Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69(20) 3221
[56] Tranquada J, Woo H, Perring T, Goka H, Gu G, Xu G, Fujita M, Yamada K 2004 Nature 429 534Google Scholar
[57] Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709Google Scholar
[58] Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 1
[59] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar
[60] Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E, Perring T, et al 2013 Nat. Commun. 4 2874Google Scholar
[61] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, Luo H 2020 Phys. Rev. Lett. 125 117002Google Scholar
[62] Gu Q, Wen H H 2022 Innovation 3 100202
[63] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chinese Phys. Lett. 41 077402Google Scholar
[64] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, et al 2023 Nature 621 493Google Scholar
[65] Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, et al 2024 Nature 634 579Google Scholar
[66] Wxu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117402Google Scholar
[67] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar
[68] Zhu Z, Pan B, Nie L, Ni J, Yang Y, Chen C, Jiang C, Huang Y, Cheng E, Yu Y, et al 2023 Innovation 4 100459
[69] Lin G, Ma J 2023 Innovation 4 100484
[70] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar
[71] 王颖, 殳蕾 2024 物理学报 73 197601Google Scholar
Wang Y, Shu L 2024 Acta Phys. Sin. 73 197601Google Scholar
[72] Paddison J A, Daum M, Dun Z, Ehlers G, Liu Y, Stone M B, Zhou H, Mourigal M 2017 Nat. Phys. 13 117Google Scholar
[73] Stone, Matthew, B, Lumsden, Ma rk, D, Moessner, Roderich, Banerjee, Arnab 2017 Science 356 1055Google Scholar
[74] Chillal S, Iqbal Y, Jeschke H O, Rodriguez-Rivera J A, Lake B 2020 Nat. Commun. 11 2348Google Scholar
[75] Bansal D, Niedziela J L, Sinclair R, Garlea V O, Abernathy D L, Chi S, Ren Y, Zhou H, Delaire O 2018 Nat. Commun. 9 15Google Scholar
[76] Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. 64 117001Google Scholar
[77] Ren Q, Gupta M K, Jin M, Ding J, Wu J, Chen Z, Lin S, Fabelo O, Rodrxıguez-Velamazxan J A, Kofu M, et al 2023 Nat. Mater. 22 999Google Scholar
[78] Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, et al 2023 Nat. Phys. 19 1649Google Scholar
[79] Kofu M, Hashimoto N, Akiba H, Kobayashi H, Kitagawa H, Iida K, Nakamura M, Yamamuro O 2017 Phys. Rev. B 96 054304Google Scholar
[80] Shrestha U R, Mamontov E, O’Neill H M, Zhang Q, Kolesnikov A I, Chu X 2022 Innovation 3 100199
[81] Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886Google Scholar
计量
- 文章访问数: 197
- PDF下载量: 12
- 被引次数: 0