搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非弹性中子散射谱仪及其应用

胡泽 袁园 李历斯 任清勇 冯雨 沈俊英 罗伟 童欣

引用本文:
Citation:

非弹性中子散射谱仪及其应用

胡泽, 袁园, 李历斯, 任清勇, 冯雨, 沈俊英, 罗伟, 童欣

Inelastic Neutron Scattering Spectrometer and Applications

Hu Ze, Yuan Yuan, Li Li-Si, Ren Qing-Yong, Feng Yu, Shen Jun-Ying, Luo Wei, Tong Xin
PDF
HTML
导出引用
  • 非弹性中子散射谱是材料科学和物理学研究中的关键工具, 其通过观测中子与物质相互作用后的能量和动量变化, 揭示材料的微观动力学特性. 该技术为定量描述材料的声子色散和磁性激发提供了重要信息. 非弹性中子散射谱仪根据单色中子的选择方法, 可分为三轴谱仪和飞行时间谱仪. 三轴谱仪具有高信噪比、高灵活性, 并且对特定测量点能进行精确追踪; 而飞行时间谱仪则通过多种手段显著提升实验效率. 非弹性中子散射谱仪的应用范围相当广泛, 在磁性、超导、热电、催化等诸多材料的机理研究方面, 均体现出其在推动前沿科学发展中的不可或缺性. 中国散裂中子源的高能非弹性谱仪是国内首台飞行时间中子非弹性谱仪, 凭借其创新的费米斩波器设计, 成功实现了高分辨率与多能量的共存, 同时实验可用的单束中子支数达到了国际领先水平.
    Inelastic neutron scattering is a pivotal technique in materials science and physics research, revealing the microscopic dynamic properties of materials by observing the changes in energy and momentum of neutrons interacting with matter. This technique provides important information for quantitatively describing the phonon dispersion and magnetic excitations of materials. Inelastic neutron scattering spectrometers can be classified into triple-axis spectrometers and time-of-flight spectrometers based on the method of selecting monochromatic neutrons. The former has high signal-to-noise ratio, flexibility, and precise tracking capabilities for specific measurement points, while the latter significantly improves experimental efficiency through various measures. The application of inelastic neutron scattering spectrometers is quite extensive, playing an indispensable role in advancing frontier scientific research in the study of mechanisms in various materials such as magnetism, superconductivity, thermoelectrics, and catalysis. The high-energy inelastic spectrometer at the China Spallation Neutron Source is the first time-of-flight neutron inelastic spectrometer in China, achieving high resolution and multi-energy coexistence with its innovative Fermi chopper design. Additionally, the number of neutron beams available for experiments at this facility is at the forefront internationally.
  • 图 1  (a) 三轴谱仪平面图; (b) CMRR的“鲲鹏”冷三轴谱仪[17]; (c) “翠竹”热中子谱仪的构造图[18]; (d) “翠竹”热中子谱仪的照片[19]

    Fig. 1.  (a) Triple-axis spectrometer plane diagram; (b) The cold triple-axis spectrometer Kunpeng at CMRR[17]; (c) Construction diagram of the thermal triple-axis spectrometer IOP-CIAE[18]; (d) Photograph of the thermal triple-axis spectrometer IOP-CIAE[19].

    图 2  直接几何飞行时间谱仪的构造图

    Fig. 2.  The construction diagram of a direct geometry time-of-flight spectrometer.

    图 3  中国散裂中子源的高能直接几何飞行时间谱仪HD的外观图[50]

    Fig. 3.  The photograph of the high-energy direct geometry time-of-flight spectrometer HD at the CSNS[50].

    图 4  费米斩波器的构造. 分别为Sloppy斩波器(a)和钆斩波器(b)

    Fig. 4.  The construction of the Fermi chopper. (a) The Sloppy chopper. (b) Gd chopper.

    图 5  通过费米斩波器的中子飞行时间-距离图. 其中虚线表示相邻两支单色中子的能量分析区间存在重叠. 颜色的透明度代表了费米斩波器在该能量的透过率

    Fig. 5.  The neutron flight time-distance diagram of the Fermi chopper. The dashed lines indicate that there is an overlap in the energy analysis ranges of two adjacent monochromatic neutrons. The transparency of the colors represents the transmission rate of the Fermi chopper at that energy.

    图 6  费米斩波器不同转速下能量分辨率随波长的变化. 其中红色区域为RRM模式禁区

    Fig. 6.  The energy resolution of the Fermi chopper varies with wavelength at different rotation speeds. The red area indicates the forbidden zone for the RRM mode.

    图 7  使用弯通道费米斩波器的中子飞行时间图

    Fig. 7.  The neutron time-of-flight diagram with a curved channel Fermi chopper.

    图 8  SnS声子色散和动态磁化率$ (\chi''(Q, E)) $随结构相变的演化. (a)—(d)为Pnma相, (e)—(h)为Cmcm相. 在Pnma相中用谐波近似计算的低能色散[51]

    Fig. 8.  The SnS phonon dispersion and dynamic magnetic susceptibility $ (\chi''(Q, E)) $ evolve with structural phase transitions. (a)–(d) correspond to the Pnma phase, while (e)–(h) correspond to the Cmcm phase. The low-energy dispersion calculated using harmonic approximation in the Pnma phase is shown[51].

    图 9  (a)为通过非弹性中子散射测量$ {\mathrm{La}}_3 $$ {\mathrm{Ni}}_2 $$ {\mathrm{O}}_{7-\delta} $的能谱, 强度为低温减去高温数据, (b)为通过自旋波计算得到的自旋激发谱[55]

    Fig. 9.  The energy spectrum of ${\mathrm{La}}_3 $${\mathrm{Ni}} _2 $${\mathrm{O}} _{7-\delta} $ was measured through inelastic neutron scattering, with intensity being the low-temperature data subtracted from the high-temperature data, (b) The spin excitation spectrum obtained through spin wave calculations[55].

    图 10  (a)为通过非弹性中子散射测量的$ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $粉末的磁激发, (b)为$ {\mathrm{PbCuTe}}_2 $${\mathrm{ O}}_6 $单晶的磁激发谱[74].

    Fig. 10.  (a) The magnetic excitations of ${\mathrm{PbCuTe}} _2 $$ {\mathrm{O}}_6 $ powder measured by inelastic neutron scattering, (b) The magnetic excitation spectrum of $ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $ single crystal[74].

    表 1  各个非弹谱仪的参数对比. 其中L1、L2和L3分别为慢化器到费米斩波器的距离、样品到费米斩波器的距离和样品到探测器的距离

    Table 1.  Parameter comparison of various non-elastic spectrometers. Among them, L1, L2 and L3 are the distance from the moderator to the Fermi chopper, the distance from the sample to the Fermi chopper and the distance from the sample to the detector respectively.

    谱仪 HRC 4SEASONS SEQUOIA ARCS MERLIN HD
    中子源 J-PARC J-PARC SNS SNS ISIS CSNS
    慢化器 DHM CHM DWM DWM DWM DWM
    Ei(meV) 1$ \sim $2000 5$ \sim $300 8$ \sim $2000 10$ \sim $1500 7$ \sim $2000 10$ \sim $1500
    Q(Å-1) 0.15$ \sim $22 0.1$ \sim $41.5
    水平角度 –31°$ \sim $62° –35°$ \sim $130° –30°$ \sim $60° –28°$ \sim $135° –45°$ \sim $135° –30$ \sim $130°
    前期(-30°$ \sim $60°)
    垂直角度 20°$ \sim $20° –25°$ \sim $27° –18°$ \sim $18° –27°$ \sim $26° –30° $ \sim $30° –30$ \sim $30°
    分辨率 >2% >5 % 1%$ \sim $5% 3%$ \sim $5% 4%$ \sim $7% 3%$ \sim $10%
    L1/L2/L3 14/1/4 16.3/1.7/2.5 18/2/5.53 11.6/2/3$ \sim $3.4 10/1.8.2.5 16/2/2.5
    样品尺寸 5*5 cm2 4.5*4.5 cm2
    or 2*2 cm2
    5*5 cm2 5*5 cm2 5*5 cm2 5*5 cm2
    or 3*3 cm2
    下载: 导出CSV
  • [1]

    Rutherford E 1920 Proc. R. Soc. London, Ser. A 97 374Google Scholar

    [2]

    Chadwick J 1932 Nature 129 312

    [3]

    Von Halban H 1936 Acad. Sci. Paris 203 73

    [4]

    Elsasser W 1936 CR Acad. Sci 202 1029

    [5]

    Mitchell D P, Powers P N 1936 Phys. Rev. 50 486

    [6]

    Bloch F 1936 Phys. Rev. 50 259Google Scholar

    [7]

    Alvarez L W, Bloch F 1940 Phys. Rev. 57 111Google Scholar

    [8]

    Shull C G, Smart J S 1949 Phys. Rev. 76 1256

    [9]

    Brockhouse B, Hurst D 1952 Phys. Rev. 88 542Google Scholar

    [10]

    Brockhouse B 1958 Il Nuovo Cimento (1955-1965) 9 45Google Scholar

    [11]

    Besnard M, Dianoux A J, Lalanne P, Lassegues J C 1977 J. Phys. 38 1417Google Scholar

    [12]

    Janik J A 1982 Adv. Liq. Cryst. 5 215

    [13]

    Gaskell P H, Saeed A, Chieux P, Mckenzie D R 1991 Phys. Rev. Lett. 67 1286Google Scholar

    [14]

    Loong C K, Vashishta P, Kalia R K, Degani M H, Zheng Y 1989 Phys. Rev. Lett. 62 2628Google Scholar

    [15]

    Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055Google Scholar

    [16]

    Squires G L, Lynn J W 1978 Phys. Today 32 69

    [17]

    Song J M, Luo W, Liu B Q, Li X, Hu B F, Huang C Q, Chen B, Sun G A, Pang B B, Zhang Y, et al 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 968 163929Google Scholar

    [18]

    李世亮, 戴鹏程 2011 物理 40 33

    Li S L, Dai P C 2011 Wuli 40 33

    [19]

    李天富, 武梅梅, 焦学胜, 孙凯, 陈东风 2020 原子核物理评论 37 364

    Li T F, Wu M M, Jiao X S, Sun K, Chen D F 2020 Nucl. Phys. Rev. 37 364

    [20]

    Brockhouse B, Stewart A 1955 Phys. Rev. 100 756Google Scholar

    [21]

    Rodriguez J A, Adler D M, Brand P C, Broholm C, Cook J C, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn J W, Maliszewskyj N C, Moyer J, Orndorff J, Pierce D, Pike T D, Scharfstein G, Smee S A, Vilaseca R 2008 Meas. Sci. Technol. 19 034023Google Scholar

    [22]

    Lynn J, Chen Y, Chang S, Zhao Y, Chi S, W Ratcliff I, Ueland B, Erwin R 2012 J. Res. Natl. Inst. Stand. Technol. 117 61

    [23]

    Boehm M, Hiess A, Kulda J, Roux S, Saroun J 2008 Meas. Sci. and Technol. 19 034024Google Scholar

    [24]

    Jimenez-Ruiz M, Hiess A, Currat R, Kulda J, Bermejo F 2006 Physica B Condens. Matter 385 1086

    [25]

    Wu C M, Deng G, Gardner J, Vorderwisch P, Li W H, Yano S, Peng J C, Imamovic E 2016 J. Instrum. 11 P10009Google Scholar

    [26]

    Danilkin S A, Yethiraj M, Saerbeck T, Klose F, Ulrich C, Fujioka J, Miyasaka S, Tokura Y, Keimer B 2012 J. Phys. Conf. Ser. 340 012003Google Scholar

    [27]

    Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar

    [28]

    Nawa K, Okuyama D, Wu H C, Murasaki R, Matsuzaka S, Kinjo K, Sato T J 2024 J. Phys. Soc. Japan 93 091001Google Scholar

    [29]

    Fischer W 1997 Physica B Condens. Matter 234-236 1202Google Scholar

    [30]

    Stuhr U, Roessli B, Gvasaliya S, Rnnow H, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, C K, Keller P, Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16Google Scholar

    [31]

    Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grünwald A, Georgii R, Hao L, Liu Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 821 17Google Scholar

    [32]

    Demmel F, Fleischmann A, Gläser W 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 416 115Google Scholar

    [33]

    Kempa M, Janousova B, Saroun J, Flores P, Boehm M, Demmel F, Kulda J 2006 Physica B Condens. Matter 385-386 1080Google Scholar

    [34]

    Groitl F, Toft-Petersen R, Quintero-Castro D L, Meng S, Lu Z, Huesges Z, Le M D, Alimov S, Wilpert T, Kiefer K, et al 2017 Sci. Rep. 7 13637Google Scholar

    [35]

    Utschick C, Skoulatos M, Schneidewind A, Böni P 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 837 88Google Scholar

    [36]

    Sobolev O, Hoffmann R, Gibhardt H, Jünke N, Knorr A, Meyer V, Eckold G 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 772 63Google Scholar

    [37]

    Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar

    [38]

    Wang J, Liu J, Xu D, Grünauer F, Hao L, Liu Y, Zhang H, Cheng P, Bao W 2024 Chin. Phys. B 33 057801Google Scholar

    [39]

    Firk F 1979 Nucl. Instrum. Methods 162 539Google Scholar

    [40]

    Yu D, Mole R, Noakes T, Kennedy S, Robinson R 2013 J. Phys. Soc. Japan 82 SA027Google Scholar

    [41]

    Cicognani G, Mutka H, Sacchetti F 2000 Physica B Condens. Matter 276 83

    [42]

    Ollivier J, Mutka H, Didier L 2010 Neutron News 21 22Google Scholar

    [43]

    Kajimoto R, Yokoo T, Nakajima K, Nakamura M, Soyama K, Ino T, Shamoto S, Fujita M, Ohoyama K, Hiraka H, et al 2007 J. Neutron Res. 15 5Google Scholar

    [44]

    Nakajima K, Ohira-Kawamura S, Kikuchi T, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, et al 2011 J. Phys. Soc. Japan 80 SB028Google Scholar

    [45]

    Le M D, Guidi T, Bewley R, Stewart J R, Schooneveld E M, Raspino D, Pooley D E, Boxall J, Gascoyne K F, Rhodes N J, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1056 168646Google Scholar

    [46]

    Bewley R, Eccleston R, McEwen K, Hayden S, Dove M, Bennington S, Treadgold J, Coleman R 2006 Physica B Condens. Matter 385-386 1029Google Scholar

    [47]

    Bewley R, Taylor J, Bennington S 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 637 128Google Scholar

    [48]

    Abernathy D L, Stone M B, Loguillo M, Lucas M, Delaire O, Tang X, Lin J, Fultz B 2012 Rev. Sci. Instrum 83 015114Google Scholar

    [49]

    Ehlers G, Podlesnyak A A, Niedziela J L, Iverson E B, Sokol P E 2011 Rev. Sci. Instrum. 82 085108Google Scholar

    [50]

    Luo W, Feng Y, Liu X, Wang M, Zhu D, Gao W, Geng Y, Ren Q, Shen J, Sun Y, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676Google Scholar

    [51]

    Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, Delaire O 2020 Nat. Commun. 11 4430Google Scholar

    [52]

    Sidis Y, Pailhès S, Hinkov V, Fauquxe B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745Google Scholar

    [53]

    Fujita M, Hiraka H, Matsuda M, Matsuura M, M Tranquada J, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Japan 81 011007Google Scholar

    [54]

    Dai P 2015 Rev. Mod. Phys. 87 855Google Scholar

    [55]

    Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69(20) 3221

    [56]

    Tranquada J, Woo H, Perring T, Goka H, Gu G, Xu G, Fujita M, Yamada K 2004 Nature 429 534Google Scholar

    [57]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709Google Scholar

    [58]

    Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 1

    [59]

    Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [60]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E, Perring T, et al 2013 Nat. Commun. 4 2874Google Scholar

    [61]

    Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, Luo H 2020 Phys. Rev. Lett. 125 117002Google Scholar

    [62]

    Gu Q, Wen H H 2022 Innovation 3 100202

    [63]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chinese Phys. Lett. 41 077402Google Scholar

    [64]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, et al 2023 Nature 621 493Google Scholar

    [65]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, et al 2024 Nature 634 579Google Scholar

    [66]

    Wxu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117402Google Scholar

    [67]

    Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar

    [68]

    Zhu Z, Pan B, Nie L, Ni J, Yang Y, Chen C, Jiang C, Huang Y, Cheng E, Yu Y, et al 2023 Innovation 4 100459

    [69]

    Lin G, Ma J 2023 Innovation 4 100484

    [70]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [71]

    王颖, 殳蕾 2024 物理学报 73 197601Google Scholar

    Wang Y, Shu L 2024 Acta Phys. Sin. 73 197601Google Scholar

    [72]

    Paddison J A, Daum M, Dun Z, Ehlers G, Liu Y, Stone M B, Zhou H, Mourigal M 2017 Nat. Phys. 13 117Google Scholar

    [73]

    Stone, Matthew, B, Lumsden, Ma rk, D, Moessner, Roderich, Banerjee, Arnab 2017 Science 356 1055Google Scholar

    [74]

    Chillal S, Iqbal Y, Jeschke H O, Rodriguez-Rivera J A, Lake B 2020 Nat. Commun. 11 2348Google Scholar

    [75]

    Bansal D, Niedziela J L, Sinclair R, Garlea V O, Abernathy D L, Chi S, Ren Y, Zhou H, Delaire O 2018 Nat. Commun. 9 15Google Scholar

    [76]

    Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. 64 117001Google Scholar

    [77]

    Ren Q, Gupta M K, Jin M, Ding J, Wu J, Chen Z, Lin S, Fabelo O, Rodrxıguez-Velamazxan J A, Kofu M, et al 2023 Nat. Mater. 22 999Google Scholar

    [78]

    Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, et al 2023 Nat. Phys. 19 1649Google Scholar

    [79]

    Kofu M, Hashimoto N, Akiba H, Kobayashi H, Kitagawa H, Iida K, Nakamura M, Yamamuro O 2017 Phys. Rev. B 96 054304Google Scholar

    [80]

    Shrestha U R, Mamontov E, O’Neill H M, Zhang Q, Kolesnikov A I, Chu X 2022 Innovation 3 100199

    [81]

    Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886Google Scholar

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报, doi: 10.7498/aps.74.20241534
    [2] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, doi: 10.7498/aps.73.20240926
    [3] 王义, 张秋楠, 韩冬, 李元景. 多气隙电阻板室飞行时间谱仪技术. 物理学报, doi: 10.7498/aps.68.20182192
    [4] 邓沛娜, 易洲, 张丽丽, 李华. 基于准弹性中子散射谱分析水化硅酸钙(C-S-H)中受限水的动态. 物理学报, doi: 10.7498/aps.65.106101
    [5] 刘本琼, 宋建明, 张伟斌, 罗伟, 王燕, 夏元华, 宗和厚, 高国防, 孙光爱. 黑索金的非弹性中子散射及第一性原理计算. 物理学报, doi: 10.7498/aps.65.047802
    [6] 张美, 张显鹏, 李奎念, 盛亮, 袁媛, 宋朝晖, 李阳. 中子散射成像探测角分辨研究. 物理学报, doi: 10.7498/aps.64.042801
    [7] 易洲, 张丽丽, 李华. 水泥老化过程中水动态的准弹性中子散射(QENS)谱分析. 物理学报, doi: 10.7498/aps.64.056101
    [8] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, doi: 10.7498/aps.63.152801
    [9] 章法强, 杨建伦, 李正宏, 应纯同, 刘广均. 14MeV中子照相中散射中子对成像影响的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.56.3577
    [10] 杨昌平, 周智辉, 王 浩, K. Iwasa, M. Kohgi. 填充式方钴矿化合物CeOs4Sb12近藤相互作用的非弹性中子散射研究. 物理学报, doi: 10.7498/aps.55.6643
    [11] 陶昉, 张泰永, 牛世文, 勾成, 施仲坚, 林泉. 中子非弹性散射对Bi12GeO20和Bi12SiO20旋声性的研究. 物理学报, doi: 10.7498/aps.35.196
    [12] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.34.689
    [13] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.30.538
    [14] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射. 物理学报, doi: 10.7498/aps.29.257
    [15] 李竹起, 阮景辉, 吴善令, 杨同华, 何敏, 陆挺, 成之绪, 陈桂英, 叶春堂. 用于凝聚态物质研究的旋转晶体中子飞行时间谱仪. 物理学报, doi: 10.7498/aps.29.1462
    [16] 李铁城, 许政一. Debye-Hückel方程描写的离子导体对光、中子和电子束的准弹性散射. 物理学报, doi: 10.7498/aps.27.175
    [17] 陆挺, 阮景辉, 李竹起, 萨本豪, 董秀芳. 氢化锆中氢的热中子散射总截面. 物理学报, doi: 10.7498/aps.24.210
    [18] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射. 物理学报, doi: 10.7498/aps.19.673
    [19] 张焕乔. 中子平面晶体谱仪的分辨宽度. 物理学报, doi: 10.7498/aps.19.477
    [20] 安万寿, 张焕乔, 杨继廉, 朱家瑄, 李光定. 中子衍射仪的构造与性能. 物理学报, doi: 10.7498/aps.17.222
计量
  • 文章访问数:  197
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-03

/

返回文章
返回