搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多气隙电阻板室飞行时间谱仪技术

王义 张秋楠 韩冬 李元景

引用本文:
Citation:

多气隙电阻板室飞行时间谱仪技术

王义, 张秋楠, 韩冬, 李元景

Time of flight technology based on multi-gap resistive plate chamber

Wang Yi, Zhang Qiu-Nan, Han Dong, Li Yuan-Jing
PDF
HTML
导出引用
  • 基于多气隙电阻板室(MRPC)技术的飞行时间谱仪广泛应用于现代物理实验, 并在粒子鉴别中发挥了重要作用. 随着加速器能量和实验亮度的提高, 对飞行时间谱仪的粒子计数率和时间分辨要求越来越高. MRPC飞行时间谱仪按技术上可以分成三代. 从第一代到第三代, 计数率要求越来越高(> 30 kHz/cm2), 时间精度也更加严格(< 20 ps), 相应的探测器结构和读出电子学系统呈现出不同的特性. 本文总结了三代飞行时间谱仪技术的主要技术特点及主要物理实验, 介绍了已经取得的应用成果, 提出了该技术的未来发展方向. 同时也介绍了MRPC探测器在工业及医学方面的应用.
    Particle identification is very important in nuclear and particle physics experiments. Time of flight system (TOF) plays an important role in particle identification such as the separation of pion, kaon and proton. Multi-gap resistive plate chamber (MRPC) is a new kind of avalanche gas detector and it has excellent time resolution power. The intrinsic time resolution of narrow gap MRPC is less than 10 ps. So the MRPC technology TOF system is widely used in modern physics experiments for particle identification. With the increase of accelerator energy and luminosity, the TOF system is required to indentify definite particles precisely under high rate environment. The MRPC technology TOF system can be defined as three generations according to the timing and rate requirement. The first-generation TOF is based on the float glass MRPC and its time resolution is around 80 ps, but the rate is relatively low (typically lower than 100 Hz/cm2). The typical systems are TOF of RHIC-STAR, LHC-ALICE and BES III endcap. For the second-generation TOF, its time resolution has the same order as that for the first generation, but the rate capability is much higher. Its rate capability can reach 30 kHz/cm2. The typical experiment with this high rate TOF is FAIR-CBM. The biggest challenge is in the third-generation TOF. For example, the momentum upper limit of $ {\rm{K}}/{\text{π}}$ separation is around 7 GeV/c for JLab-SoLID TOF system under high particle rate as high as 20 kHz/cm2, and the time requirement is around 20 ps. The readout electronics of first two generations is based on time over threshold method, and pulse shape sampling technology will be used in the third-generation TOF. In the same time, the machine learning technology LSTM network is also used to analyze the time performance. As a very successful sample, MRPC barrel TOF has been used in RHIC-STAR for more than ten years and many important physics results have been obtained. A prominent result is the observation of antimatter helium-4 nucleus. This discovery proves the existence of antimatter in the early universe. In this paper, we will describe the evolution of MRPC TOF technology and key technology of each generation of TOFs including MRPC detector and related electronics. The industrial and medical usage of MRPC are also introduced in the work finally.
      通信作者: 王义, yiwang@mail.tsinghua.edu.cn
    • 基金项目: 科技部基金(批准号: 2015CB856905, 2008CB8177072, 2016YFA0400100)和国家自然科学基金(批准号: 11420101004, 11461141011, 11275108, 11735009)资助的课题.
      Corresponding author: Wang Yi, yiwang@mail.tsinghua.edu.cn
    • Funds: Project supported by the Program of Ministry of Science and Technology of China (Grant Nos. 2015CB856905, 2008CB8177072, 2016 YFA0400100) and the National Natural Science Foundation of China (Grant Nos. 11420101004, 11461141011, 11275108, 11735009).
    [1]

    Acosta D, Ahn M, Anikeev K, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 492 605

    [2]

    王景波 2013 博士学位论文 (北京: 清华大学)

    Wang J B 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [3]

    Wang Y, Wang J B, Cheng J P, et al. 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 613 200Google Scholar

    [4]

    Wu J, Bonner B, Chen H F, et al. 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 538 243Google Scholar

    [5]

    Akindinov A, Anselmo F, Basile M, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 456 16Google Scholar

    [6]

    Williams M C S 1998 Nucl. Phys. B 61B 250

    [7]

    Shao M, Ruan L J, Chen H F, et al. 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 344Google Scholar

    [8]

    Anghinolfi F, Jarron P, Krummenacher F, Usenko E, Williams M C S 2004 IEEE Trans. Nucl. Sci. 5 1974

    [9]

    http://tdc.web.cern.ch/TDC/hptdc/docs/hptdc_manual_ver2.2.pdf/ [2018-12-13]

    [10]

    Agakishiev H, Aggarwal M M, Ahammed Z, et al. 2011 Nature 473 353Google Scholar

    [11]

    Boine-Frankenheim O 2010 Proceedings of IPAC’10 Kyoto, Japan, May 23-28, 2010 p2430

    [12]

    Höhne C 2016 PoS 272

    [13]

    Abbrescia M, Peskov V, Fonte P 2018 Resistive Gaseous Detectors: Designs, Performance, and Perspectives (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp234-235

    [14]

    Wang J B, Wang Y, Zhu X L, et al. 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 621 151Google Scholar

    [15]

    Wang J B, Wang Y, Gonzalez-Diaz D, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 713 40Google Scholar

    [16]

    Deppner I, Herrmann N, Akindinov A, et al. 2014 JINST 9 C10014Google Scholar

    [17]

    Wang Y, Lyu P F, Huang X, et al. 2016 JINST 11 C08007Google Scholar

    [18]

    Ciobanu M, Herrmann N, Hildenbrand K D, et al. 2008 IEEE Nucl. Sci. Symp. Conf. Rec. Dresden, Germany, October 19—25, 2008 p2018

    [19]

    The GSI Event Driven TDC ASIC GET4 V1.23, Flemming H, Deppe H http://dx.doi.org/10.15120/GR-2014-1-FG-CS-11/ [2018-12-13]

    [20]

    Cebra D, Geurts F, Depper I, et al. 2016 arXiv: 1609.05102 [nucl-ex]

    [21]

    Gao H, Gamberg L, Chen J P, et al. 2011 Eur. Phys. J. Plus 126 2Google Scholar

    [22]

    Wang F Y, Han D, Wang Y, et al. 2018 arXiv: 1812.02912v2 [physics.ins-det]

    [23]

    Wang F Y, Han D, Wang Y, et al. 2018 arXiv: 1805.02833 [physics.ins-det]

    [24]

    Ritt S, 2008 IEEE Nucl. Sci. Symp. Conf. Rec Dresden, Germany, October 19-25 2008, p1512

    [25]

    Guida R, Mandelli B, Rigoletti G 2019 The 15th Vienna Conference on Instrumentation Vienna, 21 February.

    [26]

    Couceiroa M, Blancoa A, Ferreira Nuno C, et al. 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 915Google Scholar

    [27]

    Wang J, Wang Y, Wang X, et al. 2016 JINST 11 C11008Google Scholar

    [28]

    Eric O, Jean F G, Herv G, et al. 2013 arXiv: 1309.4397v1 [physics.ins-det]

    [29]

    Wang J H, Liu S B, Zhao L, et al. 2011 IEEE Trans. Nucl. Sci. 58 2011Google Scholar

  • 图 1  几种不同时间分辨飞行时间谱仪系统的$ {\text{π}}/{\rm{K}}$鉴别能力, 飞行距离L = 8 m

    Fig. 1.  $ {\text{π}}/{\rm{K}}$ separation power of TOF system with different time resolution, flight distance L = 8 m.

    图 2  MRPC探测器结构示意图

    Fig. 2.  The structure diagram of MRPC.

    图 3  STAR-TOF MRPC结构及照片

    Fig. 3.  Structure and picture of STAR-TOF MRPC.

    图 4  STAR-TOF tray集成照片

    Fig. 4.  Picture of STAR-TOF tray.

    图 5  时间游走原理图

    Fig. 5.  Schematic of time slewing.

    图 6  对MRPC的时间幅度信号进行校正, 以修正定时误差

    Fig. 6.  Slewing correction of MRPC to improve time precision.

    图 7  STAR-TOF的粒子鉴别图

    Fig. 7.  The PID of STAR-TOF.

    图 8  上图和中图是通过STAR-TOF测得的带电粒子质量和能量损失的二维图; 下图是带电粒子质量的一维图, 反氦4核的质量等于3.73 GeV/c2. 利用飞行时间谱仪, 在10亿次碰撞产生的5000亿条径迹中清晰地分辨出18个反氦4物质

    Fig. 8.  The top two panels show the dE/dx of charged particles as a function of mass measured by the TOF system; The bottom panel shows the mass distribution of charge particles. The mass of antimatter helium-4 nucleus is 3.73 GeV/c2. 18 antimatter helium-4 nucleus are discriminated from around 500 billion tracks generated by one billion collisions.

    图 9  测试得到的MRPC探测效率和时间分别随粒子计数率的变化[15]

    Fig. 9.  Measured efficiency and time resolution of MRPC change with particle rate.

    图 10  CBM-TOF结构

    Fig. 10.  The structure of CBM-TOF.

    图 11  MRPC3a探测器照片

    Fig. 11.  Picture of MRPC3a.

    图 12  由5个MRPC和相应电子学组成的飞行时间探测器模块

    Fig. 12.  CBM-TOF module is consisted of 5 MRPC counters and related electronics.

    图 13  不同PADI阈值下, MRPC3a探测器的时间分辨, 探测效率和簇大小

    Fig. 13.  Time resolution, efficiency and cluster size of MRPC3a at different threshold of PADI.

    图 14  同方威视公司密云生产车间正在进行高计数率MRPC的批量生产

    Fig. 14.  High rate MRPC were produced at Miyun manufacture base of NUCTECH Ltd.

    图 15  STAR-eTOF的粒子鉴别

    Fig. 15.  The PID of STAR-eTOF.

    图 16  高时间分辨MRPC及读出电子学

    Fig. 16.  High resolution MRPC and read out electronics.

    图 17  粒子到达MRPC的时间点${t_a}$可以由信号波形前沿得到

    Fig. 17.  The time point ${t_a}$ of particle arriving at MRPC can be obtained from pulse shape.

    图 18  用于MRPC时间重建的LSTM网络架构

    Fig. 18.  The structure diagram of LSTM network used for time reconstruction of MRPC.

    图 19  模拟得到MRPC探测效率和时间分辨随气隙场强的变化, 可以看出, 采用LSTM网络法重建出的时间分辨比时幅校正得到结果要好

    Fig. 19.  Simulated efficiency and time resolution of MRPC change with electric field in the gas gap. It can be seen the time resolution reconstructed with LSTM network is better than with slewing correction.

    图 20  采用LSTM网络方法分析得到MRPC的测试时间谱

    Fig. 20.  Time spectrum of MRPC in cosmic test analyzed with LSTM network.

    表 1  三代MRPC飞行时间谱仪性能列表

    Table 1.  Performance of three generation MRPC TOF.

    TOF系统时间分辨
    /ps
    计数率
    /kHz·cm–2
    电极电阻率
    /Ω·cm
    电子学分析方法典型实验
    第一代80< 0.1~1012NINO + HPTDCTOT slewing correctionRHIC-STAR
    LHC-ALICE
    第二代80>20 ~1010PADIX + GET4TOT slewing correctionFAIR-CBM
    第三代20>20 ~1010Fast amplifier + SCATOT slewing correction
    Deep learning
    JLab-SoLID
    下载: 导出CSV

    表 2  低电阻玻璃性能

    Table 2.  The performance of low resistive glass.

    性能参数典型值
    标准尺寸33 cm × 27.6 cm
    体电阻率/Ω·cm~1010
    标准厚度/mm0.7, 1.1
    厚度均匀性/μm20
    表面粗糙度/nm< 10
    介电常数7.5–9.5
    DC测试累积电荷达1 C/cm2
    下载: 导出CSV
  • [1]

    Acosta D, Ahn M, Anikeev K, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 492 605

    [2]

    王景波 2013 博士学位论文 (北京: 清华大学)

    Wang J B 2013 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [3]

    Wang Y, Wang J B, Cheng J P, et al. 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 613 200Google Scholar

    [4]

    Wu J, Bonner B, Chen H F, et al. 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 538 243Google Scholar

    [5]

    Akindinov A, Anselmo F, Basile M, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 456 16Google Scholar

    [6]

    Williams M C S 1998 Nucl. Phys. B 61B 250

    [7]

    Shao M, Ruan L J, Chen H F, et al. 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 344Google Scholar

    [8]

    Anghinolfi F, Jarron P, Krummenacher F, Usenko E, Williams M C S 2004 IEEE Trans. Nucl. Sci. 5 1974

    [9]

    http://tdc.web.cern.ch/TDC/hptdc/docs/hptdc_manual_ver2.2.pdf/ [2018-12-13]

    [10]

    Agakishiev H, Aggarwal M M, Ahammed Z, et al. 2011 Nature 473 353Google Scholar

    [11]

    Boine-Frankenheim O 2010 Proceedings of IPAC’10 Kyoto, Japan, May 23-28, 2010 p2430

    [12]

    Höhne C 2016 PoS 272

    [13]

    Abbrescia M, Peskov V, Fonte P 2018 Resistive Gaseous Detectors: Designs, Performance, and Perspectives (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp234-235

    [14]

    Wang J B, Wang Y, Zhu X L, et al. 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 621 151Google Scholar

    [15]

    Wang J B, Wang Y, Gonzalez-Diaz D, et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 713 40Google Scholar

    [16]

    Deppner I, Herrmann N, Akindinov A, et al. 2014 JINST 9 C10014Google Scholar

    [17]

    Wang Y, Lyu P F, Huang X, et al. 2016 JINST 11 C08007Google Scholar

    [18]

    Ciobanu M, Herrmann N, Hildenbrand K D, et al. 2008 IEEE Nucl. Sci. Symp. Conf. Rec. Dresden, Germany, October 19—25, 2008 p2018

    [19]

    The GSI Event Driven TDC ASIC GET4 V1.23, Flemming H, Deppe H http://dx.doi.org/10.15120/GR-2014-1-FG-CS-11/ [2018-12-13]

    [20]

    Cebra D, Geurts F, Depper I, et al. 2016 arXiv: 1609.05102 [nucl-ex]

    [21]

    Gao H, Gamberg L, Chen J P, et al. 2011 Eur. Phys. J. Plus 126 2Google Scholar

    [22]

    Wang F Y, Han D, Wang Y, et al. 2018 arXiv: 1812.02912v2 [physics.ins-det]

    [23]

    Wang F Y, Han D, Wang Y, et al. 2018 arXiv: 1805.02833 [physics.ins-det]

    [24]

    Ritt S, 2008 IEEE Nucl. Sci. Symp. Conf. Rec Dresden, Germany, October 19-25 2008, p1512

    [25]

    Guida R, Mandelli B, Rigoletti G 2019 The 15th Vienna Conference on Instrumentation Vienna, 21 February.

    [26]

    Couceiroa M, Blancoa A, Ferreira Nuno C, et al. 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 915Google Scholar

    [27]

    Wang J, Wang Y, Wang X, et al. 2016 JINST 11 C11008Google Scholar

    [28]

    Eric O, Jean F G, Herv G, et al. 2013 arXiv: 1309.4397v1 [physics.ins-det]

    [29]

    Wang J H, Liu S B, Zhao L, et al. 2011 IEEE Trans. Nucl. Sci. 58 2011Google Scholar

  • [1] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [3] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [4] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [5] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [6] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法. 物理学报, 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [7] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [8] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [9] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [10] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [11] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [12] 林子扬, 万辉, 尹君, 侯国辉, 牛憨笨. 分子环境变化对振动退相时间影响的实验研究. 物理学报, 2015, 64(14): 143301. doi: 10.7498/aps.64.143301
    [13] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究. 物理学报, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [14] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [15] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究. 物理学报, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [16] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究. 物理学报, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [17] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [18] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化. 物理学报, 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [19] 吴文智, 闫玉禧, 郑植仁, 金钦汉, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱. 物理学报, 2007, 56(5): 2926-2930. doi: 10.7498/aps.56.2926
    [20] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用. 物理学报, 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
计量
  • 文章访问数:  7193
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-03-25
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回