搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响

王庆玲 迪拉热·哈力木拉提 沈玉玲 艾尔肯·斯地克

引用本文:
Citation:

多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响

王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克

Effect of polyhedral co-substitution on the crystal structure and luminescence color of Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+

Wang Qing-Ling, Dilare·Halimulati, Shen Yu-Ling,
PDF
HTML
导出引用
  • 采用高温固相法合成Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+荧光粉完全固溶体, 利用X射线衍射、光致发光光谱和光学显微镜进行晶体结构和发光性能的研究. Sr2Al2SiO7和Sr2MgSi2O7同构化合物中包含[MgO4]、[SiO4]和[AlO4]四面体, 较大体积的[MgO4]和较小体积的[SiO4], 共同替代体积相似的[AlO4], 导致[(Si/Al)O4]收缩和[(Mg/Al)O4]膨胀, 晶胞参数c减少, aV增大, 使Eu2+周围的环境发生改变, 晶体场劈裂程度减小, 发射峰位从503 nm蓝移至467 nm, 实现发光光谱从绿色(0.2384, 0.3919)到蓝色(0.1342, 0.1673)的转变. 当x为0时, 发射峰的半高宽为120 nm, x从0.25增加到1时, 半高宽由89 nm逐渐减小至50 nm, 多面体的替代会改变荧光粉的发光性能.
    A series of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors is prepared by the high-temperature solid-state reaction method, the crystal structures and luminescent properties of the prepared phosphors are investigated by measuring the X-ray diffraction, luminescent spectra and optical microscope. The isomorphic compounds of Sr2Al2SiO7 and Sr2MgSi2O7 contain tetrahedra including [MgO4], [SiO4] and [AlO4]. Although the valences of the [MgO4]6–, [SiO4]4– and [AlO4]5– groups are different, the charge imbalance occurs when the [MgO4]6– and [SiO4]4– substitutes of [AlO4]5– and [AlO4]5–, respectively. While the groups are co-substituted, the charge imbalance disappears. And the larger volume of [MgO4] and the smaller volume of [SiO4] together replaces the similar volume of [AlO4], resulting in the decrease of [(Si/Al)O4] and increase of [(Mg/Al)O4]. Moreover, the decrease of unit cell parameters c and the increase of a and V due to the increased replacement of Mg2+ (0.57 Å for CN = 4) by Al3+(0.39 Å for CN = 4) and Si4+ (0.26 Å for CN = 4) by Al3+ (0.39 Å for CN = 4) cause the ambient temperature to change, the crystal field splitting of the Eu2+ cation to be weakened, and the emission spectra to be blue-shifted from 503 nm to 467 nm, which are closely related to the local coordination environment of the Eu2+, in addition, this reveals that the emission color of this series of phosphors can be tuned from green with color coordinate (0.2384, 0.3919) to blue (0.1342, 0.1673) by adjusting the chemical compositions via the [MgO4]6– and [SiO4]4– groups’ co-substitution for [AlO4]5–. The full width at half maximumof emission band is 120 nm when x = 0, the photoluminescence emission width decreases monotonically from 89 to 50 nm as x is increased from 0.25 to 1. In other words, the full width at half maximum of emission band exhibits a decreasing trend. The internal quantum efficiency is enhanced with increasing x in Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors. These results verify that the groups’ substitutions are enhanced with polyhedron changing in the solid solutions and contribute largely to the luminescence properties of the phosphor.
      通信作者: 艾尔肯·斯地克, aierkenjiang@sina.com
    • 基金项目: 国家自然科学自然基金(批准号: 11464045)资助的课题.
      Corresponding author: , aierkenjiang@sina.com
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11464045).
    [1]

    Chen M Y, Xia Z G, Molokeev M S, Wang T, Liu Q L 2017 Chem. Mater. 29 1430Google Scholar

    [2]

    Li S X, Wang L, Zhu Q Q, Tang D M, Liu X J, Cheng G F, Lu L, Taked T, Hirosaki N, Huang Z R, Xie R J 2016 J. Mater. Chem. C 4 11219Google Scholar

    [3]

    Li S X, Wang L, Tang M M, Cho Y J, Liu X J, Zhou X T, Lu L, Zhang L, Taked T, Hirosaki N, Xie R J 2018 Chem. Mater. 30 494Google Scholar

    [4]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [5]

    Xia Z G, Poeppelmeier K R 2017 Accounts Chem. Res. 50 1222Google Scholar

    [6]

    Ji H P, Huang Z H, Xia Z G, Molokeev M S, Atuchin V V, Fang M H, Liu Y G 2015 J. Phys. Chem. 119 2038Google Scholar

    [7]

    Xia Z G, Liu Q 2016 Prog. Mater. Sci. 84 59Google Scholar

    [8]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2011 Mat. Sci. Eng. R. 71 1

    [9]

    Shang M M, Liang S S, Qu N R, Lian H Z, Lin J 2017 Chem. Mater. 29 1813Google Scholar

    [10]

    Dubey S, Deshmukh P, Satapathy S, Singh M K, Gupta P K 2016 Luminesence 32 839Google Scholar

    [11]

    赵永旺, 苏全帅, 张超, 安胜利 2016 稀土 37 85Google Scholar

    Zhao Y W, Su Q S, Zhang C, An S L 2016 Chinese Rare Earths 37 85Google Scholar

    [12]

    赵永旺, 张超, 赵文广, 安胜利 2017 稀土 38 87

    Zhao Y W, Zhang C, Zhao G W, An S L 2017 Chinese Rare Earths 38 87

    [13]

    Shuang Y M, Zhu F L, Wang J D 2008 J. Func. Mater. 39 1078

    [14]

    Xia Z G, Ma C G, Molokeev M S, Liu Q L, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494Google Scholar

    [15]

    Lu F C, Bai L J, Dang W, Yang Z P, Lin P 2015 ECS J. Solid State Sc. 4 27Google Scholar

    [16]

    Tam T T H, Hung N Y, Lien N D K, Kien N D T, Huy P T 2016 Sci. Adv. Mater. 1 204Google Scholar

    [17]

    梁敬魁 2011 粉末衍射法测定晶体结构(上册)(北京:科学出版社) 第78页

    Liang J K 2003 Determination of Crystal Structure by Powder Diffraction (Vol. 1) (Beijing: Science Press) p78 (in Chinese)

    [18]

    Denault K A, George N C, Paden S R, Brinkley S, Mikhailovsky A A, Neuefeind J, DenBaars S P, Seshadri R J 2012 Mater. Chem. 22 18204Google Scholar

    [19]

    Denault K A, Brgoch J, Gaultois M W, Mikhailovsky A, Petry R, Winkler H, DenBaars S P, Seshadri R 2014 Chem. Mater. 26 2275Google Scholar

    [20]

    Guo Y, Park S H, Choi B C, Jeong J H, Kim J H 2018 J. Alloy. Compd. 742 159Google Scholar

  • 图 1  (a) 样品C的XRD精修图谱;(b) Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的XRD图谱和2θ范围为15°—23°的峰位移动放大图;(c)晶胞参数随浓度x变化曲线图

    Fig. 1.  (a) Rietveld refinement of C; (b) XRD patterns of the Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1), the right inset is the magnified XRD patterns for 2θ region form 15° to 23°; (c) give the cell parameters (a/b, c) and volume (V), respectively, as a function of x concentration

    图 2  Sr1.98(Al1-xMgx)(Al1-xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化激发光谱

    Fig. 2.  Normalized excitation spectra of Sr1.98(Al1xMgx) (Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    图 3  (a), (b)在波长365 nm激发下样品A, C, E的光学显微镜图像和Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化发射光谱

    Fig. 3.  (a) Optical microscope image of A, C, E excited at a wavelength of 365 nm and (b) normalized emission spectra of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors under 365 nm UV light excitation

    图 4  Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)在365 nm激发波长下的色坐标(插图为实物照片)

    Fig. 4.  Color coordinates of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) under λex = 365 nm in the CIE chromaticity diagram (the insets show the corresponding digital photos)

    图 5  在荧光粉Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)中, 随着x的增加, 多面体[(Si/Al)O4]的收缩和多面体[(Mg/Al)O4]的膨胀对发光中心多面体的扭曲

    Fig. 5.  Increasing of x leads to polyhedral [(Si/Al)O4] shrinkage and polyhedral [(Mg/Al)O4] expansion distortion the luminescent center polyhedron of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    图 6  Eu2+的5d能级变化示意图, VB, CB和CFS分别代表价带, 导带和晶体场劈裂

    Fig. 6.  Schematics of the changes in 5d energy levels of the activator. CFS, CB, and VB are crystal field splitting, the conduction band, and the valence band, respectively

    表 1  Sr1.98(Al1–xMgx)(Al1xSi1+x)O7: 2%Eu2+(0≤x ≤ 1)荧光粉发射波长的半高宽, 色坐标值和内量子效率

    Table 1.  The PL bands, color coordinate value, and internal quantum efficiency of Sr1.98(Al1xMgx)(Al1xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors

    样品 发射光谱 色坐标 IQY
    λem/nm FWHM/nm x y
    A 503 120 0.2384 0.3919 4.3%
    B 472 89 0.1972 0.2951 6.1%
    C 470 61 0.1675 0.2312 7.3%
    D 468 54 0.1463 0.1873 9.0%
    E 468 50 0.1342 0.1673 23%
    下载: 导出CSV
  • [1]

    Chen M Y, Xia Z G, Molokeev M S, Wang T, Liu Q L 2017 Chem. Mater. 29 1430Google Scholar

    [2]

    Li S X, Wang L, Zhu Q Q, Tang D M, Liu X J, Cheng G F, Lu L, Taked T, Hirosaki N, Huang Z R, Xie R J 2016 J. Mater. Chem. C 4 11219Google Scholar

    [3]

    Li S X, Wang L, Tang M M, Cho Y J, Liu X J, Zhou X T, Lu L, Zhang L, Taked T, Hirosaki N, Xie R J 2018 Chem. Mater. 30 494Google Scholar

    [4]

    Xia Z G, Liu G K, Wen J G, Mei Z G, Balasubramanian M, Molokeev M S, Peng L C, Gu L, Miller D J, Liu Q L, Poeppelmeier K R 2016 J. Am. Chem. Soc. 138 1158Google Scholar

    [5]

    Xia Z G, Poeppelmeier K R 2017 Accounts Chem. Res. 50 1222Google Scholar

    [6]

    Ji H P, Huang Z H, Xia Z G, Molokeev M S, Atuchin V V, Fang M H, Liu Y G 2015 J. Phys. Chem. 119 2038Google Scholar

    [7]

    Xia Z G, Liu Q 2016 Prog. Mater. Sci. 84 59Google Scholar

    [8]

    Ye S, Xiao F, Pan Y X, Ma Y Y, Zhang Q Y 2011 Mat. Sci. Eng. R. 71 1

    [9]

    Shang M M, Liang S S, Qu N R, Lian H Z, Lin J 2017 Chem. Mater. 29 1813Google Scholar

    [10]

    Dubey S, Deshmukh P, Satapathy S, Singh M K, Gupta P K 2016 Luminesence 32 839Google Scholar

    [11]

    赵永旺, 苏全帅, 张超, 安胜利 2016 稀土 37 85Google Scholar

    Zhao Y W, Su Q S, Zhang C, An S L 2016 Chinese Rare Earths 37 85Google Scholar

    [12]

    赵永旺, 张超, 赵文广, 安胜利 2017 稀土 38 87

    Zhao Y W, Zhang C, Zhao G W, An S L 2017 Chinese Rare Earths 38 87

    [13]

    Shuang Y M, Zhu F L, Wang J D 2008 J. Func. Mater. 39 1078

    [14]

    Xia Z G, Ma C G, Molokeev M S, Liu Q L, Rickert K, Poeppelmeier K R 2015 J. Am. Chem. Soc. 137 12494Google Scholar

    [15]

    Lu F C, Bai L J, Dang W, Yang Z P, Lin P 2015 ECS J. Solid State Sc. 4 27Google Scholar

    [16]

    Tam T T H, Hung N Y, Lien N D K, Kien N D T, Huy P T 2016 Sci. Adv. Mater. 1 204Google Scholar

    [17]

    梁敬魁 2011 粉末衍射法测定晶体结构(上册)(北京:科学出版社) 第78页

    Liang J K 2003 Determination of Crystal Structure by Powder Diffraction (Vol. 1) (Beijing: Science Press) p78 (in Chinese)

    [18]

    Denault K A, George N C, Paden S R, Brinkley S, Mikhailovsky A A, Neuefeind J, DenBaars S P, Seshadri R J 2012 Mater. Chem. 22 18204Google Scholar

    [19]

    Denault K A, Brgoch J, Gaultois M W, Mikhailovsky A, Petry R, Winkler H, DenBaars S P, Seshadri R 2014 Chem. Mater. 26 2275Google Scholar

    [20]

    Guo Y, Park S H, Choi B C, Jeong J H, Kim J H 2018 J. Alloy. Compd. 742 159Google Scholar

  • [1] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [2] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] 毛金伟, 吕树臣, 曲秀荣, 何冬丽, 孟庆裕. 发光二极管用红色荧光粉Sr0.8-xBaxEu0.2WO4的制备和性质研究. 物理学报, 2013, 62(3): 037803. doi: 10.7498/aps.62.037803
    [6] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [7] 路芳, 张兴华, 卢遵铭, 徐学文, 唐成春. Sr和Ba替代对Eu掺杂Ca2.955Si2O7的结构和发光特性的影响研究. 物理学报, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [8] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [9] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [10] 方庆清, 王伟娜, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. Zn1-xMgxO薄膜的光致发光特性研究. 物理学报, 2009, 58(8): 5836-5841. doi: 10.7498/aps.58.5836
    [11] 吴小丽, 陈长乐, 韩立安, 罗炳成, 高国棉, 朱建华. 衬底温度对PLD法生长的Mg0.05Zn0.95O薄膜结构和发光特性的影响. 物理学报, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [12] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [13] 罗建乔, 孙敦陆, 张庆礼, 刘文鹏, 谷长江, 吴路生, 殷绍唐. Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光. 物理学报, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [14] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [15] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [17] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] 李善锋, 张庆瑜. Er/Yb共掺硅酸盐玻璃的光致发光. 物理学报, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [19] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [20] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱. 物理学报, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
计量
  • 文章访问数:  9859
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26
  • 修回日期:  2019-03-06
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回