-
利用固相反应法制备了Sr和Ba替代的Ca2.955-xMxSi2O7: 0.045Eu2+ (M= Sr, Ba, x= 0.10.5)系列荧光粉, 利用较大离子半径的Sr和Ba元素替代Eu掺杂Ca2.955-xMxSi2O7 中的Ca元素,研究Sr和Ba替代对样品结构和发光特性的影响. X射线衍射测试结果表明,少量Sr和Ba替代不会改变基质的晶体结构, 样品仍然为单斜晶系.未替代前, Ca2.955Si2O7: 0.045Eu2+ 样品的发射峰在574 nm左右,随着Sr含量的增加,样品的发射峰发生蓝移; 而Ba含量在x= 0.10.4时不会引起发射峰位置的移动, 但x= 0.5样品的发射峰发生蓝移.同等含量的Sr和Ba部分替代样品中的Ca元素, Ba替代样品的光谱强度较强.A series of Ca2.955-xMxSi2O7: 0.045Eu2+ (M= Sr, Ba, x= 0.10.5) phosphors is prepared by solid-state reaction method. The influences of Sr or Ba with larger radius substitution on the structure and luminescence properties for Ca2.955Si2O7: 0.045Eu2 + phosphor are investigated. The XRD results show that a small quantity of Sr or Ba substitution of Ca does not change the structure of Ca3Si2O7 host which has a monoclinic crystal structure. Before the substitution, the emission peak is at about 574 nm. If the Ca2+ ions are substituted by Sr2+ or Ba2+ ions, the emission peak is blue shifted when the Sr or Ba concentration is 0.5. In addition, for the same doping contents of Sr and Ba, the Ba doped phosphors have stronger emission intensity.
[1] Zhang H X, Buddhudu S, Kam C H, Zhou Y, Lam Y L, Wong K S, Ooi B L, Ng S L, Que W X 2001 Mater. Chem. Phys. 68 31
[2] Bachmann V, Ronda C, Oeckler O, Schnick W, Meijerink A 2009 Chem. Mater. 21 316
[3] Kim J S, Jeon P E, Choi J C, Park H L 2005 Solid State Commun. 133 187
[4] Jang H S, Jeon D Y 2007 Appl. Phys. Lett. 90 041906
[5] Park J K, Cho K J, Yeon J H 2006 Appl. Phys. Lett. 88 043511
[6] Cui Z G, Jia G H, Deng D G, Hua Y J, Zhao S L, Huang L H, Wang H P, Ma H P, Xu S Q 2012 J. Lumin. 132 153
[7] Park W J, Song Y H, Yoon D H 2010 Mater. Sci. Eng. B 173 76
[8] Yang Z P, Liu Y F 2006 Acta Phys. Sin. 55 4946 (in Chinese) [杨志平, 刘玉峰 2006 物理学报 55 4946]
[9] Qian F J, Fu R L, Agathopoulos S, Gu X G, Song X F 2012 J. Lumin. 132 71
[10] Park W J, Jung M K, Kang S M, Masaki T, Yoon D H 2008 J. Phys. Chem. Sol. 69 1505
[11] Jiang L, Chang C, Mao D 2003 J. Alloys Compds. 360 193
[12] Wu H Y, Wang Y H, Hu Y H, Chen X H 2010 J. Guangdong Univ. Technol. 27 20 (in Chinese) [吴浩怡, 王银海, 胡义华, 陈雪花 2010 广东工业大学学报 27 20]
[13] Xie W, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Liao F 2010 Acta Phys. Sin. 59 1148 [谢伟, 王银海, 胡义华, 吴浩怡, 邓柳咏, 廖峰 2010 物理学报 59 1148]
[14] Xu S Y, Zhang X S, Zhou Y L, Xi Q, Li L 2011 Chin. Phys. B 20 037804
[15] Kim J S, Park Y H, Kim S M, Choi J C, Park H L 2005 Solid State Commun. 133 445
[16] Mikhailik V B, Kraus H, Wahl D 2004 Phys. Rev. B 69 205110
-
[1] Zhang H X, Buddhudu S, Kam C H, Zhou Y, Lam Y L, Wong K S, Ooi B L, Ng S L, Que W X 2001 Mater. Chem. Phys. 68 31
[2] Bachmann V, Ronda C, Oeckler O, Schnick W, Meijerink A 2009 Chem. Mater. 21 316
[3] Kim J S, Jeon P E, Choi J C, Park H L 2005 Solid State Commun. 133 187
[4] Jang H S, Jeon D Y 2007 Appl. Phys. Lett. 90 041906
[5] Park J K, Cho K J, Yeon J H 2006 Appl. Phys. Lett. 88 043511
[6] Cui Z G, Jia G H, Deng D G, Hua Y J, Zhao S L, Huang L H, Wang H P, Ma H P, Xu S Q 2012 J. Lumin. 132 153
[7] Park W J, Song Y H, Yoon D H 2010 Mater. Sci. Eng. B 173 76
[8] Yang Z P, Liu Y F 2006 Acta Phys. Sin. 55 4946 (in Chinese) [杨志平, 刘玉峰 2006 物理学报 55 4946]
[9] Qian F J, Fu R L, Agathopoulos S, Gu X G, Song X F 2012 J. Lumin. 132 71
[10] Park W J, Jung M K, Kang S M, Masaki T, Yoon D H 2008 J. Phys. Chem. Sol. 69 1505
[11] Jiang L, Chang C, Mao D 2003 J. Alloys Compds. 360 193
[12] Wu H Y, Wang Y H, Hu Y H, Chen X H 2010 J. Guangdong Univ. Technol. 27 20 (in Chinese) [吴浩怡, 王银海, 胡义华, 陈雪花 2010 广东工业大学学报 27 20]
[13] Xie W, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Liao F 2010 Acta Phys. Sin. 59 1148 [谢伟, 王银海, 胡义华, 吴浩怡, 邓柳咏, 廖峰 2010 物理学报 59 1148]
[14] Xu S Y, Zhang X S, Zhou Y L, Xi Q, Li L 2011 Chin. Phys. B 20 037804
[15] Kim J S, Park Y H, Kim S M, Choi J C, Park H L 2005 Solid State Commun. 133 445
[16] Mikhailik V B, Kraus H, Wahl D 2004 Phys. Rev. B 69 205110
计量
- 文章访问数: 8607
- PDF下载量: 680
- 被引次数: 0