搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的扫频光学相干断层扫描成像畸变校正

马翠 陈沛哲 杨璐 韩涛 汤赟 陈昌勇 丁志华

引用本文:
Citation:

基于机器学习的扫频光学相干断层扫描成像畸变校正

马翠, 陈沛哲, 杨璐, 韩涛, 汤赟, 陈昌勇, 丁志华

A machine learning approach to correct imaging distortions in swept-source optical coherence tomography

MA Cui, CHEN Peizhe, YANG Lu, HAN Tao, TANG Yun, CHEN Changyong, DING Zhihua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光学相干断层扫描(optical coherence tomography, OCT)成像中不可避免的畸变常常导致成像空间与真实空间之间的不匹配, 影响测量的准确性. 为解决该问题, 本研究提出了一种基于机器学习的OCT图像畸变校正方法. 首先, 将带有均匀分布圆孔阵列的校准板依次在不同标记平面进行成像. 选取坐标与所有成像平面的平均坐标偏差最小的点作为参考标记点. 然后, 利用数学模型重构参考平面上所有标记点的坐标, 从而建立校准板成像空间与真实物理空间之间的映射关系. 采用多层感知机来学习这种映射关系. 利用训练完成的模型推导整个空间点的分布规律, 从而实现透镜OCT图像的畸变校正, 并求出透镜中心厚度与曲率半径. 校正后透镜曲率半径精度达到10 μm, 误差在1%以内. 中心厚度精度可达3 μm, 相对误差为0.3%.
    The inevitable distortions in optical coherence tomography (OCT) imaging often lead to mismatches between the imaging space and the real space, significantly affecting measurement accuracy. To address this issue, this study proposes a machine learning-based OCT image distortion correction method. A calibration plate with uniformly distributed circular hole arrays is sequentially imaged at different marked planes. The point showing minimal deviation between its coordinates and the mean coordinates in all imaging planes is selected as a reference marker. A mathematical model is then used to reconstruct all marker point coordinates in the reference plane, establishing a mapping relationship between the imaging space of calibration plate and the real physical space. A multilayer perceptron (MLP) is employed to learn this mapping relationship. The network architecture consists of multiple fully-connected modules, each with a linear layer and an activation function besides the output layer. The optimal model is selected based on validation set performance, and then used to analyze the spatial distribution of points. Using a swept-source OCT system, lens images are acquired and corrected through the trained model to obtain the anterior surface point cloud. Combined with ray tracing reconstruction of the posterior surface, the lens curvature radius and central thickness are calculated. The experimental results show that after correction, the lens curvature radius is measured with an accuracy of 10 μm (error < 1%), while the central thickness is determined, with an accuracy of 3 μm (relative error: 0.3%). This method shows high accuracy and reliability, providing an effective solution for improving OCT measurement accuracy.
  • 图 1  基于标定板的OCT成像畸变校正

    Fig. 1.  Distortion correction of OCT imaging using a calibration plate.

    图 2  基于MLP网络的映射关系拟合

    Fig. 2.  Fitting of mapping relationship based on MLP network.

    图 3  扫频 OCT 系统

    Fig. 3.  SS-OCT system.

    图 4  成像空间中标记点及其坐标的确定流程 (a)标定板横断面图; (b) “圆孔”区域与背景区域的划分; (c)分割模板; (d)基于“圆孔”区域质心的标记点分布图

    Fig. 4.  Process for the determination of marker points and their coordinates in the imaging space: (a) Cross-sectional view of the calibration plate; (b) division of the “circular hole” regions from the background; (c) segmentation template; (d) distribution map of marker points by centroids of the “circular hole” regions.

    图 5  标记点点云分布 (a)成像空间单层点云分布; (b)真实空间单层点云分布; (c)成像空间全部点云分布; (d)真实空间全部点云分布

    Fig. 5.  Distribution of marker point clouds: (a) Single-layer point cloud distribution in imaging space; (b) single-layer point cloud distribution in real space; (c) overall point cloud distribution in imaging space; (d) overall point cloud distribution in real space.

    图 6  模型校正与真实点轴向残差与未校正对应真实点轴向残差分布图 (a), (d), (g)未校正点$P$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差; (b), (e), (h)线性回归模型的校正点$P'$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差; (c), (f), (i)本文校正模型的校正点$P'$与对应真实空间点$\hat P$坐标的X, Y, Z轴向残差

    Fig. 6.  Comparison of axial residuals between model-corrected data and true points versus uncorrected data and true points, along with their distribution plots: (a), (d), (g) Axial residuals (X/Y/Z) between uncorrected point $P$ and the ground-truth spatial point $\hat P$; (b), (e), (h) axial residuals (X/Y/Z) between the linear regression-corrected point $P'$ and the ground-truth spatial point $\hat P$; (c), (f), (i) axial residuals (X/Y/Z) between the proposed model-corrected point $P'$ and the ground-truth spatial point $\hat P$.

    图 7  3种透镜第一面校正前后点云分布 (a)平凸透镜校正前; (b)平凸透镜校正后; (c)双凸透镜校正前; (d)双凸透镜校正后; (e)双凹透镜校正前; (f)双凹透镜校正后

    Fig. 7.  Point cloud distribution of the first surface of three types of lenses before and after correction: (a) Plano-convex lens before correction; (b) plano-convex lens after correction; (c) biconvex lens before correction; (d) biconvex lens after correction; (e) biconcave lens before correction; (f) biconcave lens after correction.

    表 1  不同回归模型畸变校正效果

    Table 1.  Distortion correction performance of different regression models.

    偏差值/μm$\Delta x$$\Delta y$$\Delta z$$\Delta s$
    线性回归11.9218.689.8540.45
    K近邻6.8928.1341.5976.6
    随机森林19.1614.3699.12132.64
    XGBoost6.6845.1954.18106.05
    本文方法3.492.676.9413.11
    下载: 导出CSV

    表 2  平凸透镜矫正前后参数测量结果对比

    Table 2.  Comparison of parameter measurement results for plano-convex lens before and after correction.

    平凸透镜 R1 R2 d
    校正前/mm 129.05 (45.71%/54.84%) 1.334 (0.054%/4.2%)
    校正后/mm 83.33 (0.01%/0.01%) 1.288 (0.008%/0.6%)
    名义标准值/mm –83.34 1.28
    下载: 导出CSV

    表 4  双凹透镜矫正前后参数测量结果对比

    Table 4.  Comparison of parameter measurement results for biconcave lens before and after correction.

    双凹透镜 R1 R2 d
    校正前/mm 29.87 (4.77%/19.0%) 18.93 (6.17%/24.6%) 0.927 (0.023%/2.4%)
    校正后/mm 25.17 (0.07%/0.2%) 24.94 (0.16%/0.6%) 0.947 (0.003%/0.3%)
    名义标准值/mm 25.10 –25.10 0.95
    下载: 导出CSV

    表 3  双凸透镜矫正前后参数测量结果对比

    Table 3.  Comparison of parameter measurement results for biconvex lens before and after correction.

    双凸透镜 R1 R2 d
    校正前/mm 30.56 (6.01%/24.5%) 31.38 (6.83%/27.8%) 1.958 (0.48%/2.5%)
    校正后/mm 24.58 (0.03%/0.1%) 24.73 (0.18%/0.7%) 1.918 (0.008%/0.4%)
    名义标准值/mm –24.55 24.55 1.91
    下载: 导出CSV
  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    Tomlins P H, Wang R K 2005 J. Phys. D Appl. Phys. 38 2519Google Scholar

    [3]

    丁宇韬, 张君, 郭遥, 陈昊 2024 激光与光电子学进展 61 247

    Ding Y T, Zhang J, Guo Y, Chen H 2024 Laser Optoelectron. Prog. 61 247

    [4]

    Volker W, Andrew R, Sunita R, Joseph I 2002 Opt. Express 10 397Google Scholar

    [5]

    Diaz J, Rahlves M, Majdani O, Reithmeier E, Ortmaier T 2012 Optical Metrology and Inspection for Industrial Applications II Beijing, China, November 5-7, 2012 p8563J

    [6]

    Yao J, Anderson A, Rolland J P 2018 Opt. Express 26 10242Google Scholar

    [7]

    江祥奎, 范永青, 王婉 2014 计算机科学与探索 8 1254Google Scholar

    Jiang X Q, Fan Y Q, Wang W 2014 J. Front. Comput. Sci. Technol 8 1254Google Scholar

    [8]

    齐召帅, 王昭, 黄军辉, 薛琦, 高建民 2016 光子学报 45 87

    Qi Z S, Wang Z, Huang J H, Xue Q, Gao J M 2016 Acta Photonica Sin. 45 87

    [9]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [10]

    Li X Y, Zhang B, Sander P V, Liao J 2019 Computer Vision and Pattern Recognition Long Beach, CA, USA, June 15–20, 2019 p4850

    [11]

    Yang S R, Lin C Y, Liao K, Zhang C J, Zhao Y 2021 arXiv: 2103.16026v2 [cs. CV]

    [12]

    徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014209Google Scholar

    Xu Q W, Wang P P, Zeng Z J, Huang Z B, Zhou X X, Liu J M, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014209Google Scholar

    [13]

    周静, 张晓芳, 赵延庚 2021 物理学报 70 054201Google Scholar

    Zhou J, Zhang X F, Zhao Y G 2021 Acta Phys. Sin. 70 054201Google Scholar

    [14]

    Shukla S, Vishwakarma C, Sah A N, Ahirwar S, Pandey K, Pradhan A 2023 Appl. Opt. 62 6826Google Scholar

    [15]

    Breiman L, 2001 Mach. Learn. 45 5Google Scholar

    [16]

    谢探阳, 李玉梅, 张涛, 高天亮, 石玉超 2023 组合机床与自动化加工技术 2 37

    Xie T Y, Li Y M, Zhang T, Gao T L, Shi Y C 2023 Mod. Mach. Tool Autom. Manuf. Tech. 2 37

    [17]

    Kato D, Maeda N, Hirogaki T, Aoyama E, Takahashi K 2021 21st International Conference on Control, Automation and Systems Jeju, Korea, October 12–15, 2021 p607

    [18]

    Werbos P J 1981 System Modeling and Optimization Berlin, Germany, July 20–24, 1981 p762

    [19]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [20]

    王艳丽, 张宁, 张祥宇, 许益彰, 王密 2025 光学学报 45 3

    Wang Y L, Zhang N, Zhang X Y, Xu Y Z, Wang M 2025 Acta Opt. Sin. 45 3

    [21]

    Singarimbun R N, Nababan E B, Sitompul O S 2019 International Conference of Computer Science and Information Technology Medan, Indonesia, November 28–29, 2019 p1

    [22]

    Cotter A, Shamir O, Srebro N, Sridharan K 2011 Advances in Neural Information Processing Systems Granada, Spain, December 12–15, 2011 p1647

    [23]

    Fitzgibbon A, Pilu M, Fisher R B 1999 IEEE Trans. Pattern Anal. Mach. Intell. 21 476Google Scholar

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [3] 高梦琴, 章慧英, 孙彬, 刘开元, 杜持新, 李鹏. 基于光学相干血流造影引导的近红外一区视网膜血氧饱和度测量. 物理学报, doi: 10.7498/aps.74.20241686
    [4] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [5] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [6] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [7] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [8] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [9] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [10] 应大卫, 张思慧, 邓书金, 武海斌. 基于机器学习的单拍冷原子成像. 物理学报, doi: 10.7498/aps.72.20230449
    [11] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [12] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [13] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [14] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, doi: 10.7498/aps.70.20210151
    [15] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, doi: 10.7498/aps.70.20210403
    [16] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [17] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, doi: 10.7498/aps.67.20171738
    [18] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, doi: 10.7498/aps.64.174201
    [19] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, doi: 10.7498/aps.63.194201
    [20] 商在明, 丁志华, 王玲, 刘勇. 基于光程编码与相干合成的三维超分辨术. 物理学报, doi: 10.7498/aps.60.124204
计量
  • 文章访问数:  355
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-06-05
  • 上网日期:  2025-07-01

/

返回文章
返回