搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维置换加密鬼成像研究

赵一宁 陈琳珊 孔令鑫 王翀 任承 徐宝龙 曹德忠

引用本文:
Citation:

基于二维置换加密鬼成像研究

赵一宁, 陈琳珊, 孔令鑫, 王翀, 任承, 徐宝龙, 曹德忠

Ghost imaging based on two-dimensional permutational encryption

ZHAO Yining, CHEN Linshan, KONG Lingxin, WANG Chong, REN Cheng, XU Baolong, CAO Dezhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出了一种基于鬼成像的二维图像置换加密方案, 以二维随机矩阵之Kronecker积作为测量矩阵, 结合置换矩阵, 形成灵活多变的加密方式. 加密方案以图像的二维分布为基准, 采用两个随机矩阵和两个置换矩阵, 对图像进行加密操作. 这些矩阵及其排序信息都是图像加密的有效手段. 只有当随机矩阵和置换矩阵的具体形式及其排序信息完全正确时, 才能够成功解密图像. 具体而言, 在鬼成像研究中, 首先利用矩阵相乘及其Kronecker积, 将随机矩阵和置换矩阵制备成实验所需的测量矩阵, 再将测量矩阵形成一系列待投影散斑图案. 实验上, 采用空间光调制器加载物体和随机散斑图案, 利用CCD作为桶探测器采集桶测量信号, 研究了八种排序的图像置换加密及相应解密方案. 方案所提出的二维置换鬼成像加密方法灵活多变, 也为图像水印与图像隐匿等图像处理技术提供了一种新思路.
    Ghost imaging is closely related to image encryption, since the random speckle patterns are often utilized. In the two-dimensional (2D) case, computational ghost imaging can be realized through $ \boldsymbol{L}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}=\boldsymbol{Y} $, where $ \boldsymbol{X} $ is a 2D object, $ \boldsymbol{Y} $ is the bucket detection signals reshaped into a 2D form, and $ \boldsymbol{L} $ and $ \boldsymbol{R} $ are two random matrices. In this work, a scenario of flexible image encryption in ghost imaging in the 2D case is proposed. The image is encrypted into the bucket detection signals by arbitrarily arranging the two random matrices ($ \boldsymbol{L} $ and $ \boldsymbol{R} $) and other two permutation matrices ($ {\boldsymbol{P}}_{1} $ and $ {\boldsymbol{P}}_{2} $). The permutation matrices are used to disrupt the distribution of the bucket signals. Considering that the specific size of the image may not be square but rectangle, eight ways of image encryption are investigated in this work. Four of them use only one permutation matrix ($ {\boldsymbol{P}}_{1} $ or $ {\boldsymbol{P}}_{2} $), and they are $ {\boldsymbol{P}}_{1}\boldsymbol{L}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}={\boldsymbol{Y}}_{1} $, $ \boldsymbol{L}{\boldsymbol{P}}_{1}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}={\boldsymbol{Y}}_{2} $, $ \boldsymbol{L}\boldsymbol{X}{\boldsymbol{P}}_{2}{\boldsymbol{R}}^{\mathrm{T}}={\boldsymbol{Y}}_{3} $, $ \boldsymbol{L}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}{\boldsymbol{P}}_{2}={\boldsymbol{Y}}_{4} $. The other four use two permutation matrices ($ {\boldsymbol{P}}_{1} $ and $ {\boldsymbol{P}}_{2} $), and they are $ {\boldsymbol{P}}_{1}\boldsymbol{L}\boldsymbol{X}{\boldsymbol{P}}_{2}{\boldsymbol{R}}^{\mathrm{T}}={\boldsymbol{Y}}_{5} $, $ {\boldsymbol{P}}_{1}\boldsymbol{L}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}{\boldsymbol{P}}_{2}={\boldsymbol{Y}}_{6} $, $ \boldsymbol{L}{\boldsymbol{P}}_{1}\boldsymbol{X}{\boldsymbol{P}}_{2}{\boldsymbol{R}}^{\mathrm{T}}={\boldsymbol{Y}}_{7} $, and $ \boldsymbol{L}{\boldsymbol{P}}_{1}\boldsymbol{X}{\boldsymbol{R}}^{\mathrm{T}}{\boldsymbol{P}}_{2}={\boldsymbol{Y}}_{8} $.Specifically, in experiment, the measurement matrix is generated by the Kronecker product of the random matrices and permutation matrices. According to the 8 ways of image encryption, the 8 measurement matrices are $ {\boldsymbol{A}}_{1}=\left({\boldsymbol{P}}_{1}\boldsymbol{L}\right)\otimes \boldsymbol{R}, $ $ {\boldsymbol{A}}_{2}=\left(\boldsymbol{L}{\boldsymbol{P}}_{1}\right)\otimes \boldsymbol{R}, $ $ {\boldsymbol{A}}_{3}=\boldsymbol{L}\otimes \left(\boldsymbol{R}{\boldsymbol{P}}_{2}^{\mathrm{T}}\right) $, $ {\boldsymbol{A}}_{4}=\boldsymbol{L}\otimes \left({\boldsymbol{P}}_{2}^{\mathrm{T}}\boldsymbol{R}\right) $, $ {\boldsymbol{A}}_{5}=\left({\boldsymbol{P}}_{1}\boldsymbol{L}\right)\otimes \left(\boldsymbol{R}{\boldsymbol{P}}_{2}^{\mathrm{T}}\right) $, $ {\boldsymbol{A}}_{6}=\left({\boldsymbol{P}}_{1}\boldsymbol{L}\right)\otimes $$ \left({\boldsymbol{P}}_{2}^{\mathrm{T}}\boldsymbol{R}\right) $, $ {\boldsymbol{A}}_{7}=\left(\boldsymbol{L}{\boldsymbol{P}}_{1}\right)\otimes \left(\boldsymbol{R}{\boldsymbol{P}}_{2}^{\mathrm{T}}\right) $, and $ {\boldsymbol{A}}_{8}=\left(\boldsymbol{L}{\boldsymbol{P}}_{1}\right)\otimes \left({\boldsymbol{P}}_{2}^{\mathrm{T}}\boldsymbol{R}\right) $. These measurement matrices are used to form the random speckle patterns which are then projected onto the object. A spatial light modulator (SLM) is employed to load the objects and random speckle patterns. A charge coupled device (CCD) is used to obtain the bucket detection signals.As truncated singular value decomposition (TSVD) is an effective denoising method, it is used to obtain the pseudoinverse matrices of the random matrices used in the decryption process. Only when the pseudoinverse matrices of the random matrices, as well as the correct sequences of the random and permutation matrices, are known in each way, can the image be successfully decrypted. Otherwise, image decryption will not be successful. The structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and correlation coefficient (CC) are used to evaluate the quality of the decrypted images. The SSIMs of object and the 2D bucket detection signals are very low, indicating the successful encryption. The PSNRs and CCs of the successful decrypted images are better than those of unsuccessful images. The successfully decrypted images clearly reconstruct the image of the object, while the unsuccessful images are in a mess.Our method provides a new idea of image encryption in ghost imaging, and image encryption is therefore enhanced and made flexible. Moreover, the present protocol can be combined with other image encryption techniques to form a more flexible protocol, which also has some application prospects in other image processing such as watermarking and image hiding.
  • 图 1  (a)实验装置图(LD, 激光二极管; λ/2, 半波片; BE, 扩束器; P, 偏振片; L1, L2, L3, 透镜; SLM, 空间光调制器; CCD, 电荷耦合器件); (b)物体图像($ \boldsymbol{X} $: $ 64\times 128 $)、两个随机矩阵($ \boldsymbol{L}={\boldsymbol{N}}_{1} $: $ 64\times 64 $和$ \boldsymbol{R}={\boldsymbol{N}}_{2} $: $ 128\times 128 $)、两个置换矩阵($ {\boldsymbol{P}}_{1} $: $ 64\times 64 $, $ {\boldsymbol{P}}_{2} $: $ 128\times 128 $)

    Fig. 1.  (a) Experimental setup (LD, laser diode; λ/2, half waveplate; BE, beam expander; P, polarizer; L1, L2, L3, lenses; SLM, spatial light modulator; CCD, charge coupled device); (b) image ($ \boldsymbol{X} $: $ 64\times 128 $), two random matrices ($ \boldsymbol{L}={\boldsymbol{N}}_{1} $: $ 64\times 64 $ and $ \boldsymbol{R}={\boldsymbol{N}}_{2} $: $ 128\times 128 $), and two permutation matrices ($ {\boldsymbol{P}}_{1} $: $ 64\times 64 $, $ {\boldsymbol{P}}_{2} $: $ 128\times 128 $).

    图 2  使用一个置换矩阵时的加密解密图像 (a1)—(d1) 加密图像; (a2)—(d4) 解密图像. 使用的加密或解密公式标在图片下方

    Fig. 2.  Encrypted and decrypted images with one permutation matrix: (a1)–(d1) Encrypted images; (a2)–(d4) decrypted images. The encryped or decrypted equations are marked below the pictures.

    图 3  使用两个置换矩阵时的加密解密图像 (a1)—(d1) 加密图像; (a2)—(d6) 解密图像. 使用的加密或解密公式标在图片下方

    Fig. 3.  Encrypted and decrypted images with two permutation matrices: (a1)–(d1) Encrypted images; (a2)–(d6) decrypted images. The encryped or decrypted equations are marked below the pictures.

    图 4  解密图像的PSNR和CC值 (a)图2中解密图像的PSNR值; (b)图3中解密图像的PSNR值; (c)图2中解密图像的CC值; (d)图3中解密图像的CC值

    Fig. 4.  PSNRs and CCs of the decrypted images: (a) PSNRs of the decrypted images in Fig. 2; (b) PSNRs of the decrypted images in Fig. 3; (c) CCs of the decrypted images in Fig. 2; (d) CCs of the decrypted images in Fig. 3.

  • [1]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [2]

    Cao D Z, Xiong J, Zhang S H, Lin L F, Gao L, Wang K 2008 Appl. Phys. Lett. 92 201102Google Scholar

    [3]

    Chan K W C, O’Sullivan M N, Boyd R W 2009 Opt. Lett. 34 3343Google Scholar

    [4]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840Google Scholar

    [5]

    Romberg J 2008 IEEE Signal Process. Mag.  25 14

    [6]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110Google Scholar

    [7]

    Zhang C, Guo S, Cao J, Guan J, Gao F 2014 Opt. Express 22 30063Google Scholar

    [8]

    Gong W 2015 Photonics Res. 3 234Google Scholar

    [9]

    Zhang X, Meng X, Yang X, Wang Y, Yin Y, Li X, Peng X, He W, Dong G, Chen H 2018 Opt. Express 26 12948Google Scholar

    [10]

    Lv X, Guo S, Wang C, Yang C, Zhang H, Song J, Gong W, Gao F 2018 IEEE Photonics J. 10 3900708

    [11]

    Luo B, Yin P, Yin L, Wu G, Guo H 2018 Opt. Express 26 23093Google Scholar

    [12]

    Nie X, Zhao X, Peng T, Scully M O 2022 Phys. Rev. A 105 043525Google Scholar

    [13]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 7 17865Google Scholar

    [14]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6 921Google Scholar

    [15]

    Zhang X, Ren Y, Feng G, Qian Z 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing Dalian, China, October 14–16, 2011 pp222–225

    [16]

    Kong L J, Li Y, Qian S X, Li S M, Tu C, Wang H T 2013 Phys. Rev. A 88 013852Google Scholar

    [17]

    Chen W, Chen X 2013 Appl. Phys. Lett. 103 221106Google Scholar

    [18]

    Zhang Y, Zhao S 2017 Chin. Phys. B 26 054205Google Scholar

    [19]

    Wu J, Xie Z, Liu Z, Liu W, Zhang Y, Liu S 2016 Opt. Commun. 359 38Google Scholar

    [20]

    Shi D, Huang J, Wang Y, Yuan K, Xie C, Liu D, Zhu W 2017 Sci. Rep. 7 13172Google Scholar

    [21]

    Zhu J, Yang X, Meng X, Wang Y, Yin Y, Sun X, Dong G 2018 Opt. Commun. 420 34Google Scholar

    [22]

    Kang Y, Zhang L, Zhang D 2018 Opt. Lasers Eng. 111 58Google Scholar

    [23]

    Liu Y, Zheng P, Liu H C 2022 Opt. Express 30 14073Google Scholar

    [24]

    Liu J F, Dong Y, Wang L, Zhao S M 2023 Chin. Phys. B 32 074202Google Scholar

    [25]

    Zhao Y N, Chen L S, Chen L Y, Kong L, Wang C, Ren C, Zhang S H, Cao D Z 2024 Opt. Lasers Eng. 181 108408Google Scholar

    [26]

    Albert A 1972 Regression and the Moore-Penrose pseudoinverse (New York: Academic Press

    [27]

    Chen L Y, Wang C, Xiao X Y, Ren C, Zhang D J, Li Z, Cao D Z 2022 Opt. Express 30 6248Google Scholar

    [28]

    Zhou W, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600Google Scholar

    [29]

    Qu G, Meng X, Yang X, Wu H, Wang P, He W, Chen H 2021 Opt. Lasers Eng. 137 106376Google Scholar

    [30]

    Wang L, Zhao S, Cheng W, Gong L, Chen H 2016 Opt. Commun. 366 314Google Scholar

    [31]

    Qu G, Meng X, Yin Y, Wu H, Yang X, Peng X, He W 2021 Opt. Lasers Eng. 137 106392Google Scholar

    [32]

    Huang H, Han Z 2024 Results Phys. 56 107282Google Scholar

  • [1] 周阳, 杨洋, 赵佳乐, 初伟, 徐艳蕾, 张文颖. 基于盲噪声估计与迭代滤波降噪的鬼成像方法. 物理学报, doi: 10.7498/aps.74.20250544
    [2] 陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽. 傅里叶鬼成像与正弦鬼成像的等价性分析. 物理学报, doi: 10.7498/aps.72.20222317
    [3] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法. 物理学报, doi: 10.7498/aps.71.20211000
    [4] 张海鹏, 赵昌哲, 鞠晓璐, 汤杰, 肖体乔. 基于迭代重构算法改进晶体衍射分光X射线鬼成像的图像质量研究. 物理学报, doi: 10.7498/aps.71.20211978
    [5] 贾棋, 樊秦凯, 侯文清, 杨晨光, 王利邦, 王浩, 徐春华, 李明, 陆颖. DNA双链退火压力对DNA聚合酶gp5链置换的调控. 物理学报, doi: 10.7498/aps.70.20210707
    [6] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子漫步的反馈搜索算法. 物理学报, doi: 10.7498/aps.70.20211000
    [7] 张瑞雪, 李洪国, 李宗国. 基于光场一阶关联的时域成像. 物理学报, doi: 10.7498/aps.68.20190184
    [8] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像. 物理学报, doi: 10.7498/aps.67.20181240
    [9] 朱胜利, 甘露. 一种基于非完整二维相空间分量置换的混沌检测方法. 物理学报, doi: 10.7498/aps.65.070502
    [10] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, doi: 10.7498/aps.64.014202
    [11] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, doi: 10.7498/aps.63.224201
    [12] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用. 物理学报, doi: 10.7498/aps.62.184205
    [13] 孙福艳, 吕宗旺. 空间混沌序列的加密特性研究. 物理学报, doi: 10.7498/aps.60.040503
    [14] 程雪涛, 徐向华, 梁新刚. 广义流动中的积原理. 物理学报, doi: 10.7498/aps.60.118103
    [15] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述. 物理学报, doi: 10.7498/aps.60.060512
    [16] 程雪涛, 董源, 梁新刚. 积与积减原理. 物理学报, doi: 10.7498/aps.60.114402
    [17] 沈德芳, 杜腾达, 王丽娟, 张伟珠. Bi置换DyIG溅射薄膜的磁光性能与干涉效应的研究. 物理学报, doi: 10.7498/aps.40.653
    [18] 刘爱琢, 裴奉奎. 自旋置换对称体系多脉冲及二维核磁共振实验的密度算符描述(Ⅱ)——多量子积算符方法. 物理学报, doi: 10.7498/aps.39.154-2
    [19] 侯伯宇, 侯伯元, 王珮. 平移群上同调与Kronecker映象. 物理学报, doi: 10.7498/aps.35.829
    [20] 陈金全, 王凡, 高美娟. 群表示论的物理方法(Ⅱ)——置换群亚标准基和酉群Gelfand基. 物理学报, doi: 10.7498/aps.26.427
计量
  • 文章访问数:  297
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-03
  • 修回日期:  2025-05-30
  • 上网日期:  2025-06-11

/

返回文章
返回