搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥老化过程中水动态的准弹性中子散射(QENS)谱分析

易洲 张丽丽 李华

引用本文:
Citation:

水泥老化过程中水动态的准弹性中子散射(QENS)谱分析

易洲, 张丽丽, 李华

Spectral analysis of water dynamics in cement paste by quasi-elastic neutron scattering

Yi Zhou, Zhang Li-Li, Li Hua
PDF
导出引用
  • 准弹性中子散射(quasi-elastic neutron scattering, QENS)实验是研究水泥老化过程中水动态的一种新颖的实验方法.本文利用老化时间分别为7, 14和30 d水泥样品的QENS谱实验数据, 通过应用四个高斯项的和的能量分辨函数R(Q, E)代替一个高斯项的能量分辨函数来改进经验扩散模型(empirical diffusion model, EDM), 再进行非线性最小二乘拟合.由此导出水泥样品中水动态的相关物理参数: 不动水数密度A, 自由水指数FWI=B1/(A+B1+B2), 洛伦兹函数的半高宽Γ, 移动水跳跃之间的平均停留时间τ 0及自扩散系数Dt, 而且可得出更为精准的QENS谱拟合曲线.拟合得到的物理参数可定量描述水泥老化过程中水动态过程, 从而为QENS实验在水泥老化过程中水动态研究的应用提供一种合理实用的谱分析方法.
    Quasi-elastic neutron scattering (QENS) is a novel experimental technique for studying the translational dynamics of water in cement paste. In our work, the improved empirical diffusion model has been used to the nonlinear least square fit of the QENS experimental data of cement samples cured for 7, 14 and 30 days, where an energy resolution function R (Q, E) of four Gaussian terms instead of one Gaussian term is utilized during the fitting process. Parameters of the translational dynamics of water in cement paste have been deduced: the number density of immobile water A, the free water index FWI=B1/(A+B1+B2), the full width half maximum of Lorentzian function Γ, the average residence time τ0 between jumps and the self-diffusion coefficient Dt of mobile water. Fitted QENS spectra are more accurate and the dynamics of water in cement paste can be quantitatively explained with these deduced parameters.All this provides a practical and useful method for spectral analysis of QENS on translational dynamics of water in cement.
    [1]

    Aldridge L P, Bordallo H N, Desmedt A 2004 Physica B 350 e565

    [2]

    Mori K, Sato T, Fukunaga T, Oishi K, Kimura K, Iwase K, Sugiyama M, Itoh K, Shikanai F, Wuernisha T, Yonemura M, Sulistyanintyas D, Tsukushi I, Takata S, Otomo T, Kamiyma T, Kawai M 2006 Physica B 385 517

    [3]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M C 2002 J. Phys.Chem. B 106 158

    [4]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M C 2001 Phys. Rev. E 64 020201

    [5]

    Baglioni P, Fratini E, Chen S H 2002 Appl. Phys. A 74 S1178

    [6]

    FitzGerald S A, Neumann D A, Rush J J, Bentz D P, Livingston R A 1998 Chem. Mater. 10 397

    [7]

    Meyer A, Dimeo R M, Gehring P M, Neumann D A 2003 Rev. Sci. Instrum. 74 2759

    [8]

    Li H, Zhang L L, Yi Z 2014 Nuclear Techniques 37 2 (in Chinese) [李华, 张丽丽, 易洲 2014 核技术 37 2]

    [9]

    Peterson V K 2010 Springer 19

    [10]

    Thomas J J, FitzGerald S A, Neumann D A, Livingston R A 2001 J. Am. Ceram. Soc. 84 1811

    [11]

    Peterson V K, Neumann D A, Livingston R A 2005 J. Phys. Chem. B 109 14449

    [12]

    Harris D H C, Windsor C G, Lawrence C D 1974 Mag. Concrete. Res. 26 65

    [13]

    Berliner R, Popvici M, Herwig K W, Berliner M, Jennings H M, Thomas J J 1998 Cem. Concr. Res. 28 231

    [14]

    Nemes N M, Neumann D A, Livingston R A. 2006 J. Mater. Res. 21 2516

    [15]

    Zhang Y, Lagi M, Liu D Z, Mallamace F, Fratini E, Baglioni P, Mamontov E, Hagen M, Chen S H 2009 J. Chem. Phys. 130 135101

    [16]

    Li H, Fratini E, Chiang Wei-Shan, Baglioni P, Mamontov E, Chen S H 2012 Phys. Rev. E 86 061505

    [17]

    Zhang Y, Lagi M, Fratini E, Baglioni P, Mamontov E, Chen S H 2009 Phys. Rev. E 79 040201

    [18]

    Bee M 1988 Quasielastic neutron scattering (Bristol and Philadelphia: Adam Hilger)

    [19]

    Singwi K S, Sjölander A 1960 A. Phys. Rev. 119 863

    [20]

    Bordallo H N, Aldridge L P, Desmedt A, Desmedt A 2006 J. Phys. Chem. B 110 17966

    [21]

    Li H, Chiang Wei-Shan, Fratini E, Ridi F, Bausi F, Baglioni P, Tyagi M, Chen S H 2012 J. Phys-Condens. Mat. 24 064108

  • [1]

    Aldridge L P, Bordallo H N, Desmedt A 2004 Physica B 350 e565

    [2]

    Mori K, Sato T, Fukunaga T, Oishi K, Kimura K, Iwase K, Sugiyama M, Itoh K, Shikanai F, Wuernisha T, Yonemura M, Sulistyanintyas D, Tsukushi I, Takata S, Otomo T, Kamiyma T, Kawai M 2006 Physica B 385 517

    [3]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M C 2002 J. Phys.Chem. B 106 158

    [4]

    Fratini E, Chen S H, Baglioni P, Bellissent-Funel M C 2001 Phys. Rev. E 64 020201

    [5]

    Baglioni P, Fratini E, Chen S H 2002 Appl. Phys. A 74 S1178

    [6]

    FitzGerald S A, Neumann D A, Rush J J, Bentz D P, Livingston R A 1998 Chem. Mater. 10 397

    [7]

    Meyer A, Dimeo R M, Gehring P M, Neumann D A 2003 Rev. Sci. Instrum. 74 2759

    [8]

    Li H, Zhang L L, Yi Z 2014 Nuclear Techniques 37 2 (in Chinese) [李华, 张丽丽, 易洲 2014 核技术 37 2]

    [9]

    Peterson V K 2010 Springer 19

    [10]

    Thomas J J, FitzGerald S A, Neumann D A, Livingston R A 2001 J. Am. Ceram. Soc. 84 1811

    [11]

    Peterson V K, Neumann D A, Livingston R A 2005 J. Phys. Chem. B 109 14449

    [12]

    Harris D H C, Windsor C G, Lawrence C D 1974 Mag. Concrete. Res. 26 65

    [13]

    Berliner R, Popvici M, Herwig K W, Berliner M, Jennings H M, Thomas J J 1998 Cem. Concr. Res. 28 231

    [14]

    Nemes N M, Neumann D A, Livingston R A. 2006 J. Mater. Res. 21 2516

    [15]

    Zhang Y, Lagi M, Liu D Z, Mallamace F, Fratini E, Baglioni P, Mamontov E, Hagen M, Chen S H 2009 J. Chem. Phys. 130 135101

    [16]

    Li H, Fratini E, Chiang Wei-Shan, Baglioni P, Mamontov E, Chen S H 2012 Phys. Rev. E 86 061505

    [17]

    Zhang Y, Lagi M, Fratini E, Baglioni P, Mamontov E, Chen S H 2009 Phys. Rev. E 79 040201

    [18]

    Bee M 1988 Quasielastic neutron scattering (Bristol and Philadelphia: Adam Hilger)

    [19]

    Singwi K S, Sjölander A 1960 A. Phys. Rev. 119 863

    [20]

    Bordallo H N, Aldridge L P, Desmedt A, Desmedt A 2006 J. Phys. Chem. B 110 17966

    [21]

    Li H, Chiang Wei-Shan, Fratini E, Ridi F, Bausi F, Baglioni P, Tyagi M, Chen S H 2012 J. Phys-Condens. Mat. 24 064108

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [3] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [4] 邓沛娜, 易洲, 张丽丽, 李华. 基于准弹性中子散射谱分析水化硅酸钙(C-S-H)中受限水的动态. 物理学报, 2016, 65(10): 106101. doi: 10.7498/aps.65.106101
    [5] 李晨璞, 韩英荣, 展永, 胡金江, 张礼刚, 曲蛟. 肌球蛋白Ⅵ分子马达周期势场下的弹性扩散模型. 物理学报, 2013, 62(23): 230501. doi: 10.7498/aps.62.230501
    [6] 石明珠, 许廷发, 梁炯, 李相民. 单幅模糊图像点扩散函数估计的梯度倒谱分析方法研究. 物理学报, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [7] 宋潍, 陈宇灏, 李小慧, 张现亮, 王嘉辉, 蔡志岗. 基于机械共振的声谱分析技术. 物理学报, 2012, 61(22): 226202. doi: 10.7498/aps.61.226202
    [8] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用. 物理学报, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [9] 徐学友, 张延惠, 黄发忠, 林圣路, 杜孟利. 二维椭圆量子台球中的谱分析. 物理学报, 2005, 54(10): 4538-4542. doi: 10.7498/aps.54.4538
    [10] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [11] 谷 娟, 梁九卿. 施主中心量子点能谱分析. 物理学报, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [12] 侯碧辉, 睢云霞, 韩世莹, 易 俗, 沈保根. 纳米FeAl合金的磁共振谱分析. 物理学报, 1999, 48(3): 527-532. doi: 10.7498/aps.48.527
    [13] 朱沛然, 江伟林, 徐天冰, 殷士端. 硅化物薄膜的质子弹性散射分析. 物理学报, 1992, 41(12): 2049-2054. doi: 10.7498/aps.41.2049
    [14] 孙宗琦, 蒋方忻. 间隙原子非线性应力感生扩散的简化弹性偶极子模型. 物理学报, 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [15] 汪永忠. X射线荧光光谱分析经验系数法的理论分析. 物理学报, 1981, 30(11): 1520-1527. doi: 10.7498/aps.30.1520
    [16] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射. 物理学报, 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [17] 李铁城, 许政一. Debye-Hückel方程描写的离子导体对光、中子和电子束的准弹性散射. 物理学报, 1978, 27(2): 175-180. doi: 10.7498/aps.27.175
    [18] 高树濬, 钱知强. 均匀合金自扩散的准化学模型. 物理学报, 1965, 21(3): 622-629. doi: 10.7498/aps.21.622
    [19] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射. 物理学报, 1963, 19(10): 673-681. doi: 10.7498/aps.19.673
    [20] 李先枢, 余永安, 高兆兰. 联合散射分子光谱分析. 物理学报, 1961, 17(2): 113-116. doi: 10.7498/aps.17.113
计量
  • 文章访问数:  9910
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-28
  • 修回日期:  2014-10-13
  • 刊出日期:  2015-03-05

/

返回文章
返回