搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子诱发52Cr非弹性散射截面测量

谭博宇 王朝辉 吴鸿毅 韩银录 肖石良 王昊 汪文烨 王记民 李昱兆 刘颖一 王金成 陶曦 阮锡超

引用本文:
Citation:

中子诱发52Cr非弹性散射截面测量

谭博宇, 王朝辉, 吴鸿毅, 韩银录, 肖石良, 王昊, 汪文烨, 王记民, 李昱兆, 刘颖一, 王金成, 陶曦, 阮锡超

Neutron-induced inelastic scattering cross-section measurement of 52Cr

TAN Boyu, WANG Zhaohui, WU Hongyi, HAN Yinlu, XIAO Shiliang, WANG Hao, WANG Wenye, WANG Jimin, LI Yuzhao, LIU Yingyi, WANG Jincheng, TAO Xi, RUAN Xichao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 新一代反应堆对运行效率和安全性提出了更高的需求, 迫切需要更精确的非弹性散射截面数据. 不锈钢作为关键结构材料, 其中关键元素铬的非弹性散射截面的实验测量在国内仍处于空白, 同时国外的测量结果分歧较大, 严重限制了核反应堆计算的准确性. 在中国原子能科学研究院的HI-13串列加速器, 利用瞬发γ射线测量法, 在国内首次测量得到647.47 keV, 935.54 keV, 1333.65 keV, 1434.07 keV和1530.67 keV五条非弹γ的实验产生截面, 获得了三个能量(5.62 MeV, 6.24 MeV和7.95 MeV)的中子轰击52Cr的非弹散射截面实验结果. 同时, 利用理论模型计算了能量小于20 MeV的中子与52Cr的非弹性散射截面. 结果表明, 三个中子能点得到的γ产生截面与Mihailescu等的结果[Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1]在误差范围内吻合, 且不确定度更小, 实验测量数据支持Mihailescu等的结果. 理论模型计算与实验数据有较大差异, 可能来源于52Cr能级纲图的高激发态部分的实验信息缺失.
    With the development of next-generation reactors, the demand for higher precision in nuclear data has increased significantly to ensure operational efficiency and safety. Especially, inelastic scattering cross-section is one of the key parameters in nuclear reactor physics calculations, which directly affects neutron economy, thermal-hydraulic design, and safety analysis. Stainless steel is widely used in the nuclear industry. Chromium (Cr) is one of the main alloying elements in stainless steel, and 52Cr is the most abundant isotope in nature. However, the measurement of the inelastic scattering cross-section of 52Cr has not been explored in China, so the study of the 52Cr (n, n′ γ) reaction cross-section is crucial for nuclear reactor calculations. In this study, the neutron beams with energies of 5.62, 6.24, and 7.95 MeV via the D (d, n) 3He reaction are generated from the HI-13 tandem accelerator at the Institute of Atomic Energy in China. These neutrons are used to bombard a 52Cr target. Four CLOVER detectors are located at 30°, 70°, 110° and 150° relative to the beam direction in the horizontal plane. The prompt γ-ray method is used to measure the inelastic scattering cross-section by using an HPGe detector array. This is the first time that the cross-sections of five inelastic γ-rays with energies of 647.47 keV, 935.54 keV, 1333.65 keV, 1434.07 keV and 1530.67 keV have been obtained experimentally in China. Additionally, theoretical model calculations are performed to determine the inelastic scattering cross-sections of neutrons with energies below 20 MeV interacting with 52Cr. In the analysis of the experimental data, γ-ray self-absorption correction, neutron flux attenuation and multiple scattering correction are considered. The total experimental uncertainty includes the measurement uncertainty, correction term uncertainty, and standard cross-section uncertainty. The results show that the γ-ray production cross-sections obtained at the three neutron energy points are in good agreement with the data measured by Mihailescu et al. [Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1] within the error margins, and the uncertainties are smaller. However, significant discrepancies are observed between the theoretical model calculations and the experimental data, which may be attributed to the lack of experimental information about the high-excitation-energy levels in the 52Cr level scheme. This study not only fills a gap in the measurement of the 52Cr inelastic scattering cross-section but also provides important nuclear data for designing and optimizing the next-generation reactors.
  • 图 1  瞬发γ射线法在线实验平台

    Fig. 1.  Prompt γ-ray method online experimental platform.

    图 2  4个角度下测量52Cr(n, n′ γ)截面的CLOVER探测器阵列立体图

    Fig. 2.  The 3 D schematic of the CLOVER detector array for measuring the cross section of 52Cr (n, n′ γ) at 4 detection angles.

    图 3  实验样品图

    Fig. 3.  Image of the experimental sample.

    图 4  γ探测效率曲线

    Fig. 4.  The γ detection efficiency curves.

    图 5  7.95 MeV中子诱发52Cr在束γ能谱

    Fig. 5.  7.95 MeV neutron-induced 52Cr beam γ spectrum.

    图 6  52Cr (n, n′ γ)环境本底和用7.95 MeV入射中子在110°角度下得到的在束本底

    Fig. 6.  52Cr (n, n′ γ) Background obtained with the room and 7.95 MeV incident neutron at a detection angle of 110°.

    图 7  48Ti的983.5 keV产生截面[18]

    Fig. 7.  The 48Ti 983.5 keV production cross section[18].

    图 8  五个能量特征γ峰的产生截面 (a) 647.47 keV; (b) 935.54 keV; (c) 1333.65 keV; (d) 1434.07 keV; (e) 1530.67 keV

    Fig. 8.  Production cross sections of the five energy characteristic γ peaks: (a) 647.47 keV; (b) 935.54 keV; (c) 1333.65 keV; (d) 1434.07 keV; (e) 1530.67 keV.

    图 9  52Cr非弹性散射截面

    Fig. 9.  52Cr inelastic scattering cross section.

    表 1  文献中(EXFOR)部分(n, n′ γ)反应截面测量汇总[6]

    Table 1.  Summary of the main characteristics of (n, n′ γ) cross section measurements from the literature (EXFOR) [6].

    作者(年份) 实验设施 探测器 入射中子能量范围/MeV
    D.W.Van Patter(1962) Van de Graaff NaI 0.98—3.31
    F.Voss et al.(1975) Isochronous cyclotron Ge(Li) 0.5—10
    Olsen et al.(1975) Van de Graaff Ge(Li) 3—6
    A. A. Lychagin et al.(1988) Cockcroft-Walton accelerator NaI 14.1
    S.P.Simakov(1992) Weapons Neutron Research (WNR) NaI 14.1
    L.C. Mihailescu(2007) Linear accelerator EC Joint Research Centre, Geel 2 large volumn HPGe 非弹反应阈值—18
    D.N.Grozdanov(2020) TANGRA setup on the basis of ING-27 neutron generator Silicon detector, BGO, HPGe 14.1
    下载: 导出CSV

    表 2  不确定度来源

    Table 2.  Sources of uncertainty.

    符号 不确定度来源 数值/%
    ΔN 统计 3.5
    Δn 中子注量率 3.0
    Δm 样品定量 0.2
    Δε 探测效率 1.5
    Δc 修正项 3.0
    Δσ 标准截面 3.0
    Δtot 总不确定度 6.5
    下载: 导出CSV
  • [1]

    阮锡超 2023 核技术 46 080003Google Scholar

    Ruan X C 2023 Nucl. Tech. 46 080003Google Scholar

    [2]

    刘世龙, 葛智刚, 阮锡超, 陈永静 2020 原子能科学技术 54 65Google Scholar

    Liu S L, Ge Z G, Ruan X C, Chen Y J 2020 At. Energy Sci. Technol. 54 65Google Scholar

    [3]

    Aliberti G, Palmiotti G, Salvatores M, Stenberg C G 2004 Nucl. Sci. Eng. 146 13Google Scholar

    [4]

    Palmiotti G, Salvatores M 1984 Nucl. Sci. Eng. 87 333Google Scholar

    [5]

    Salvatores M, Palmiotti G 1985 Ann. Nucl. Energy 12 291Google Scholar

    [6]

    https://www-nds.iaea.org/exfor/servlet/X4sSearch5 [2024-11-6]

    [7]

    石宗仁 2002 原子核物理评论 19 42

    Shi Z R 2002 Nucl. Phys. Rev. 19 42

    [8]

    Mihailescu L C, Borcea C, Koning A J, Plompen A J M 2007 Nucl. Phys. A 799 1

    [9]

    孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816

    Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 At. Energy Sci. Technol. 56 816

    [10]

    Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar

    [11]

    Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instrum. Methods Phys. Res. , Sect. A 975 164200Google Scholar

    [12]

    吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553Google Scholar

    Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Chin. Sci. Bull. 66 3553Google Scholar

    [13]

    Tarasov O B, Bazin D 2016 Nucl. Instrum. Methods Phys. Res. , Sect. B 376 185Google Scholar

    [14]

    Schlegel D, Guldbakke S 2000 Monte Carlo 2000 Conference Lisbon, Portugal, October 23—26, 2000 p881

    [15]

    Hutcheson A, Angell C, Becker J A, Crowell A S, Dashdorj D, Fallin B, Fotiades N, Howell C R, Karwowski H J, Kawano T, Kelley J H, Kwan E, Macri R A, Nelson R O, Pedroni R S, Tonchev A P, Tornow W 2009 Phys. Rev. C 80 014603Google Scholar

    [16]

    Olliver H, Glasmacher T, Stuchbery A E 2003 Phys. Rev. C 68 044312Google Scholar

    [17]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第163—174页

    Pei L C, Zhang X Z 1980 Monte Carlo Methods and Their Application in Particle Transport Problems (Beijing: Science Press) pp163—164

    [18]

    Dashdorj D, Mitchell G E, Becker J A, Agvaanluvsan U, Bernstein L A, Younes W, Garrett P E, Chadwick M B, Devlin M, Fotiades N, Kawano T, Nelson R O https://www-nds.iaea.org/exfor/servlet/X4sGetSubent?reqx=25411&subID=14162002&plus=1 [2024-11-6]

    [19]

    Zhang J S 2002 Nucl. Sci. Eng. 142 207Google Scholar

    [20]

    Koning A, Hilaire S, Goriely S 2023 Eur. Phys. J. A 59 131Google Scholar

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, doi: 10.7498/aps.73.20231980
    [2] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法. 物理学报, doi: 10.7498/aps.67.20180563
    [3] 管娜娜. 胶子非弹性散射过程对夸克胶子等离子体中双轻子产生的影响. 物理学报, doi: 10.7498/aps.65.142501
    [4] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, doi: 10.7498/aps.62.107202
    [5] 邓一兵, 王世来. 动量空间中能质子-12C弹性散射截面和自旋量的研究. 物理学报, doi: 10.7498/aps.56.137
    [6] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [7] 顾运厅, 冯禄燕, 陶军全, 黄天衡, 罗 春, 马维兴. 46.8MeV的p+12C非弹性散射. 物理学报, doi: 10.7498/aps.54.4666
    [8] 凤任飞, 武淑兰, 暨 青, 朱林繁, 刘小井, 徐克尊. 惰性气体原子对2500eV电子的绝对弹性散射微分截面. 物理学报, doi: 10.7498/aps.47.1272
    [9] 任廷琦, 柳盛典, 张庆刚, 张怿慈. Ar+N2体系在长势域上转动非弹性散射的Opacity函数. 物理学报, doi: 10.7498/aps.43.1413
    [10] 陶昉, 张泰永, 牛世文, 勾成, 施仲坚, 林泉. 中子非弹性散射对Bi12GeO20和Bi12SiO20旋声性的研究. 物理学报, doi: 10.7498/aps.35.196
    [11] 曹明中, 王福元, 汪根时, 宋德瑛, 陈桂英, 阮景辉. 金属氢化物LaNi4.5Mn0.5Hx的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.34.689
    [12] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, doi: 10.7498/aps.30.538
    [13] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射. 物理学报, doi: 10.7498/aps.29.257
    [14] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射. 物理学报, doi: 10.7498/aps.26.449
    [15] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅱ). 物理学报, doi: 10.7498/aps.25.308
    [16] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅰ). 物理学报, doi: 10.7498/aps.25.197
    [17] 何祚庥, 张肇西, 谢诒成. 层子模型和高能电子深度非弹性散射. 物理学报, doi: 10.7498/aps.24.115
    [18] 胡宁. 层子摸型和深度非弹性散射. 物理学报, doi: 10.7498/aps.24.458
    [19] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势. 物理学报, doi: 10.7498/aps.22.569
    [20] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射. 物理学报, doi: 10.7498/aps.19.673
计量
  • 文章访问数:  402
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28
  • 修回日期:  2025-01-26
  • 上网日期:  2025-02-17

/

返回文章
返回