-
飞行时间光电子谱仪(Time-of-Flight Photoelectron Spectrometer,TOF-PES)作为超快电子动力学研究的核心工具,凭借其数十皮秒量级的飞行时间分辨率与宽能量探测范围,在阿秒脉冲表征与强场量子过程研究中提供了不可替代的技术支撑。本文尝试系统地总结飞行时间光电子谱仪的技术原理与发展历程,探讨磁瓶式高分辨率谱仪技术在电子轨迹控制与收集效率提升方面的突破,并结合双光子跃迁干涉阿秒拍频重构、阿秒条纹相机等实验技术分析其在阿秒脉冲表征中的关键作用。此外,还介绍了TOF技术与其它高精度探测手段之间的融合应用,包括角分辨光电子能谱、冷靶反冲离子动量谱仪及速度成像谱仪,展示其在获取多维电子动力学信息方面的潜力。最后对TOF技术瓶颈以及未来发展方向进行了探讨。Time-of-Flight Photoelectron Spectroscopy (TOF-PES) has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics, offering exceptional energy and temporal resolution. This article presents a comprehensive review of TOF-PES technology, its underlying principles, and its crucial role in attosecond metrology. The first part introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and enhanced energy resolution, achieved through trajectory collimation and magnetic gradient design.
We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to resolve phase and amplitude of attosecond pulse trains with sub-50 attosecond precision. These advances demonstrate TOF-PES as a critical enabler of temporal phase reconstruction and group delay measurement across extreme-ultraviolet (XUV) spectral regimes.
Further sections explore the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF), enabling full 3D momentum-resolved detection without mechanical rotation or slits. The synergy between TOF and ultrafast laser sources facilitates simultaneous energy and momentum resolution across the Brillouin zone, with applications spanning topological materials, superconductors, and charge-density wave systems.
Finally, the review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) and VMI (Velocity Map Imaging) is evaluated, highlighting its indispensable role in resolving correlated electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales.
Overall, this work underscores the central role of TOF-PES in pushing the frontiers of ultrafast science. While current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are poised to overcome these barriers. TOF-PES, through its continuous evolution, remains a critical platform for probing quantum dynamics at the fastest timescales known.-
Keywords:
- Time-of-Flight Photoelectron Spectrometer /
- Attosecond Pulse Characterization /
- Angle-Resolved Photoelectron Spectroscopy /
- Ultrafast Electron Dynamics
-
[1] Cameron A E 1948An ion" velocitron" (Atomic Energy Commission) p1
[2] Wiley W C, McLaren I H 1955Rev. Sci. Instrum. 26 1150
[3] Baldwin G C, Friedman S I 1967Rev. Sci. Instrum. 38 519
[4] Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967Rev. Sci. Instrum. 38 820
[5] Bachrach R Z, Brown F C, Hagström S B M 1975J. Vac. Sci. Technol. 12 309
[6] Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998Rev. Sci. Instrum. 69 3809
[7] Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011J. Electron Spectrosc. Relat. Phenom. 183 70
[8] Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013J. Phys. B: At. Mol. Opt. Phys. 46 164003
[9] Hsu T, Hirshfield J L 1976Electrostatic energy analyzer using a nonuniform axial magnetic field Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520
[10] Beamson G, Porter H Q, Turner D W 1980J. Phys. E: Sci. Instrum. 13 64
[11] Kruit P, Read F H 1983J. Phys. E: Sci. Instrum. 16 313
[12] Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001Rev. Sci. Instrum. 72 2543
[13] Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014J. Electron Spectrosc. Relat. Phenom. 192 69
[14] Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013Rev. Sci. Instrum. 84 023106
[15] Zhao K, Zhang Q, Chini M, Chang Z 2012Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, 2012 pp109
[16] Zhang Q, Zhao K, Chang Z 2014J. Electron Spectrosc. Relat. Phenom. 195 48
[17] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001Science 292 1689
[18] Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003Science 302 1540
[19] Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011Phys. Rev. Lett. 106 143002
[20] Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016Science 354 734
[21] Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018Rev. Sci. Instrum. 89 053103
[22] Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021Phys. Rev. A 104 063119
[23] Kumar M, Singhal H, Ansari A, Chakera J A 2023Rev. Sci. Instrum. 94 023303
[24] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001Nature 414 509
[25] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004Nature 427 817
[26] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006Science 314 443
[27] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008Science 320 1614
[28] Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012Opt. Lett. 37 3891
[29] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y 2017Nat. Commun. 8 186
[30] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017Opt. Express 25 27506
[31] Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013Chin. Phys. Lett. 30 093201
[32] Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020Chin. J. Lasers 47 415002(in Chinese) [王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫2020中国激光47 415002]
[33] Wang X, Xiao F, Wang J, Wang L, Zhang B, Liu J, Zhao J, Zhao Z 2024Ultrafast Sci. 4 0080
[34] Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020Rev. Sci. Instrum. 91 043102
[35] Boschini F, Zonno M, Damascelli A 2024Rev. Mod. Phys. 96 015003
[36] Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020Science 370 1199
[37] Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019Rev. Sci. Instrum. 90 023105
[38] Na M, Mills A K, Jones D J 2023Phys. Rep. 1036 1
[39] Haight R, Silberman J A, Lilie M I 1988Rev. Sci. Instrum. 59 1941
[40] Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008Appl. Phys. A 91 211
[41] Wannberg B 2009Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182
[42] Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011J. Electron Spectrosc. Relat. Phenom. 183 125
[43] Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113
[44] Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013J. Electron Spectrosc. Relat. Phenom. 191 92
[45] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013Science 342 453
[46] Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014Nat. Commun. 5 4010
[47] Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014New J. Phys. 16 123045
[48] Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017Nat. Mater. 16 615
[49] Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018J. Electron Spectrosc. Relat. Phenom. 224 45
[50] Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019Nat. Phys. 15 27
[51] Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020Rev. Sci. Instrum. 91 123112
[52] Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021Rev. Sci. Instrum. 92 053703
[53] Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113
[54] Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022Struct. Dyn. 9 024304
[55] Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004Nucl. Electron. Detect. Technol. 24 253(in Chinese) [朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌2004核电子学与探测技术24 253]
[56] Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011Acta Phys. Sin. 60 236(in Chinese) [郭大龙, 马新文, 冯文天, 张少锋, 朱小龙2011物理学报60 236]
[57] Ullrich J, Schmidt-Böcking H 1987Phys. Lett. A 125 193
[58] Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993Phys. Rev. Lett. 71 696
[59] Ullrich J, Schmidt-Böcking H, Dörner R, Mergel V, Spielberger L, Jagutzki O 1994Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions SCAN-9410386
[60] Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425
[61] Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998Phys. Rev. Lett. 80 5301
[62] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000Phys. Rep. 330 95
[63] Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000Phys. Rev. Lett. 84 443
[64] Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006Phys. Rev. Lett. 97 193001
[65] Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012Phys. Rev. Lett. 108 073202
[66] Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014Rev. Sci. Instrum. 85 103113
[67] Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019Sci. Adv. 5 eaau7923
[68] Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020Science 370 339
[69] Eppink A T, Parker D H 1997Rev. Sci. Instrum. 68 3477
[70] Takahashi M, Cave J P, Eland J H D 2000Rev. Sci. Instrum. 71 1337
[71] Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001Rev. Sci. Instrum. 72 3848
[72] Townsend D, Minitti M P, Suits A G 2003Rev. Sci. Instrum. 74 2530
[73] Lin J J, Zhou J, Shiu W, Liu K 2003Rev. Sci. Instrum. 74 2495
[74] Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014Rev. Sci. Instrum. 85 123303
[75] Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015Rev. Sci. Instrum. 86 096110
[76] Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015Rev. Sci. Instrum. 86 023305
[77] Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021J. Phys. Chem. A 125 5220
[78] Nomerotski A 2019Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26
[79] Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017Phys. Rev. Lett. 119 123201
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0