搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行时间光电子谱仪在超快光学测量实验中的应用

朱孝先 高亦谈 王一鸣 赵昆

引用本文:
Citation:

飞行时间光电子谱仪在超快光学测量实验中的应用

朱孝先, 高亦谈, 王一鸣, 赵昆

Applications of time-of-flight photoelectron spectrometers in ultrafast optical experiments

ZHU Xiaoxian, GAO Yitan, WANG Yiming, ZHAO Kun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 飞行时间光电子谱仪(time-of-flight photoelectron spectrometer, TOF-PES)作为超快电子动力学研究的核心工具, 凭借其数十皮秒量级的飞行时间分辨率与宽能量探测范围, 在阿秒脉冲表征与强场量子过程研究中提供了不可替代的技术支撑. 本文尝试系统地总结飞行时间光电子谱仪的技术原理与发展历程, 探讨磁瓶式高分辨率谱仪技术在电子轨迹控制与收集效率提升方面的突破, 并结合双光子跃迁干涉阿秒拍频重构、阿秒条纹相机等实验技术分析其在阿秒脉冲表征中的关键作用. 此外, 还介绍了TOF技术与其他高精度探测手段之间的融合应用, 包括角分辨光电子能谱、冷靶反冲离子动量谱仪及速度成像谱仪, 展示其在获取多维电子动力学信息方面的潜力. 最后对TOF技术瓶颈以及未来发展方向进行了探讨.
    Time-of-flight photoelectron spectroscopy (TOF-PES) with exceptional energy and temporal resolution has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics. This work comprehensively reviews the TOF-PES technology, its basic principles, and its crucial role in attosecond metrology. The first part in this paper introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and improving energy resolution through trajectory collimation and magnetic gradient design.We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT(reconstruction of attosecond beating by interference of two-photon transitions, and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to analyze the phase and amplitude of attosecond pulse trains with accuracy below 50 attosecond. These advances indicate that the TOF-PES is a key driving factor for temporal phase reconstruction and group delay measurement in an extreme-ultraviolet (XUV) spectral range.Then the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF) is explored, making it possible to realize the full 3D momentum-resolved detection without mechanical rotation or slits. The synergistic effect between TOF and ultrafast laser sources promotes the simultaneous resolution of energy and momentum resolution in the Brillouin zone, with applications covering topological materials, superconductors, and charge-density wave systems.Finally, this review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (cold target recoil ion momentum spectroscopy) and VMI (velocity map imaging) is evaluated, highlighting its indispensable role in resolving related electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales.Overall, this work emphasizes the central role of TOF-PES in advancing the frontiers of ultrafast science. Although current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are expected to overcome these barriers. TOF-PES, through its continuous evolution, is still a key platform for detecting quantum dynamics on the fastest known timescale.
  • 图 1  TOF结构示意图

    Fig. 1.  Schematic diagram of the TOF structure.

    图 2  MBES结构示意图

    Fig. 2.  Schematic diagram of the MBES.

    图 3  RABBITT实验示意图

    Fig. 3.  Schematic diagram of the RABBITT experiment.

    图 4  电子谱仪的比较 (a) 半球形分析仪; (b) 角分辨飞行时间谱仪

    Fig. 4.  Comparison of electron spectrometers: (a) Hemispherical analyzer; (b) angle-resolved time-of-flight spectrometer.

    图 5  COLTRIMS装置原理示意图

    Fig. 5.  Schematic diagram of the COLTRIMS apparatus.

    图 6  VMI装置原理示意图

    Fig. 6.  Schematic diagram of the VMI apparatus.

  • [1]

    Cameron A E, Eggers Jr D F 1948 An Ion" Velocitron" (Atomic Energy Commission) p1

    [2]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [3]

    Baldwin G C, Friedman S I 1967 Rev. Sci. Instrum. 38 519Google Scholar

    [4]

    Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967 Rev. Sci. Instrum. 38 820Google Scholar

    [5]

    Bachrach R Z, Brown F C, Hagström S B M 1975 J. Vac. Sci. Technol. 12 309Google Scholar

    [6]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar

    [7]

    Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011 J. Electron Spectrosc. Relat. Phenom. 183 70Google Scholar

    [8]

    Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003Google Scholar

    [9]

    Hsu T, Hirshfield J L 1976 Rev. Sci. Instrum. 47 236Google Scholar

    [10]

    Beamson G, Porter H Q, Turner D W 1980 J. Phys. E: Sci. Instrum. 13 64Google Scholar

    [11]

    Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313Google Scholar

    [12]

    Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001 Rev. Sci. Instrum. 72 2543Google Scholar

    [13]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 J. Electron Spectrosc. Relat. Phenom. 192 69Google Scholar

    [14]

    Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013 Rev. Sci. Instrum. 84 023106Google Scholar

    [15]

    Zhao K, Zhang Q, Chini M, Chang Z H 2012 Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, July 3—8, 2012 p109

    [16]

    Zhang Q, Zhao K, Chang Z H 2014 J. Electron Spectrosc. Relat. Phenom. 195 48Google Scholar

    [17]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [18]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [19]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [20]

    Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734Google Scholar

    [21]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018 Rev. Sci. Instrum. 89 053103Google Scholar

    [22]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [23]

    Kumar M, Singhal H, Ansari A, Chakera J A 2023 Rev. Sci. Instrum. 94 023303Google Scholar

    [24]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [25]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004 Nature 427 817Google Scholar

    [26]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443Google Scholar

    [27]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008 Science 320 1614Google Scholar

    [28]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [29]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [30]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [31]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [32]

    王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫 2020 中国激光 47 415002

    Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020 Chin. J. Lasers 47 415002

    [33]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080Google Scholar

    [34]

    Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020 Rev. Sci. Instrum. 91 043102Google Scholar

    [35]

    Boschini F, Zonno M, Damascelli A 2024 Rev. Mod. Phys. 96 015003Google Scholar

    [36]

    Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020 Science 370 1199Google Scholar

    [37]

    Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019 Rev. Sci. Instrum. 90 023105Google Scholar

    [38]

    Na M, Mills A K, Jones D J 2023 Phys. Rep. 1036 1Google Scholar

    [39]

    Haight R, Silberman J A, Lilie M I 1988 Rev. Sci. Instrum. 59 1941Google Scholar

    [40]

    Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008 Appl. Phys. A 91 211Google Scholar

    [41]

    Wannberg B 2009 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182Google Scholar

    [42]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011 J. Electron Spectrosc. Relat. Phenom. 183 125Google Scholar

    [43]

    Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113Google Scholar

    [44]

    Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013 J. Electron Spectrosc. Relat. Phenom. 191 92Google Scholar

    [45]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [46]

    Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014 Nat. Commun. 5 4010Google Scholar

    [47]

    Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014 New J. Phys. 16 123045Google Scholar

    [48]

    Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017 Nat. Mater. 16 615Google Scholar

    [49]

    Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018 J. Electron Spectrosc. Relat. Phenom. 224 45Google Scholar

    [50]

    Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019 Nat. Phys. 15 27Google Scholar

    [51]

    Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020 Rev. Sci. Instrum. 91 123112Google Scholar

    [52]

    Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021 Rev. Sci. Instrum. 92 053703Google Scholar

    [53]

    Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113Google Scholar

    [54]

    Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022 Struct. Dyn. 9 024304Google Scholar

    [55]

    朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌 2004 核电子学与探测技术 24 253Google Scholar

    Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004 Nucl. Electron. Detect. Technol. 24 253Google Scholar

    [56]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 物理学报 60 236

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 236

    [57]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [58]

    Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993 Phys. Rev. Lett. 71 696Google Scholar

    [59]

    Mergel V, Dörner R, Ullrich J, Jagutzki O, Lencinas S, Nüttgens S, Spielberger L, Unverzagt M, Cocke C L, Olson R E, Schulz M, Buck U, Zanger E, Theisinger W, Isser M, Geis S, Schmidt-Böcking H 1995 Phys. Rev. Lett. 74 2200Google Scholar

    [60]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425Google Scholar

    [61]

    Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998 Phys. Rev. Lett. 80 5301Google Scholar

    [62]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [63]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443Google Scholar

    [64]

    Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006 Phys. Rev. Lett. 97 193001Google Scholar

    [65]

    Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012 Phys. Rev. Lett. 108 073202Google Scholar

    [66]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [67]

    Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019 Sci. Adv. 5 eaau7923Google Scholar

    [68]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020 Science 370 339Google Scholar

    [69]

    Eppink A T, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [70]

    Takahashi M, Cave J P, Eland J H D 2000 Rev. Sci. Instrum. 71 1337Google Scholar

    [71]

    Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001 Rev. Sci. Instrum. 72 3848Google Scholar

    [72]

    Townsend D, Minitti M P, Suits A G 2003 Rev. Sci. Instrum. 74 2530Google Scholar

    [73]

    Lin J J, Zhou J, Shiu W, Liu K 2003 Rev. Sci. Instrum. 74 2495Google Scholar

    [74]

    Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014 Rev. Sci. Instrum. 85 123303Google Scholar

    [75]

    Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015 Rev. Sci. Instrum. 86 096110Google Scholar

    [76]

    Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015 Rev. Sci. Instrum. 86 023305Google Scholar

    [77]

    Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021 J. Phys. Chem. A 125 5220Google Scholar

    [78]

    Nomerotski A 2019 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26Google Scholar

    [79]

    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J 2017 Rev. Sci. Instrum. 88 11

    [80]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017 Phys. Rev. Lett. 119 123201Google Scholar

  • [1] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [2] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, doi: 10.7498/aps.71.20220458
    [3] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.70.20201913
    [4] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, doi: 10.7498/aps.68.20191450
    [5] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, doi: 10.7498/aps.68.20191544
    [6] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究. 物理学报, doi: 10.7498/aps.67.20181334
    [7] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.67.20181768
    [8] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, doi: 10.7498/aps.65.223206
    [9] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.64.143303
    [10] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, doi: 10.7498/aps.63.023302
    [11] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.58.4288
    [12] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, doi: 10.7498/aps.55.4496
    [13] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, doi: 10.7498/aps.54.5372
    [14] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [15] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, doi: 10.7498/aps.53.3902
    [16] 陈艳, 董国胜, 张明, 金晓峰, 陆尔东, 潘海斌, 徐彭寿, 张新夷, 范朝阳. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, doi: 10.7498/aps.44.145
    [17] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, doi: 10.7498/aps.42.1194
    [18] 鲍世宁, 徐熔, 李海洋, 朱立, 徐纯一, 徐亚伯. CO与K在Cu(111)面上共吸附的角分辨紫外光电子能谱. 物理学报, doi: 10.7498/aps.41.523
    [19] 鲍世宁, 朱立, 徐亚伯. CO在有K沉积的W(100)面上吸附的角分辨紫外光电子能谱. 物理学报, doi: 10.7498/aps.40.1888
    [20] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, doi: 10.7498/aps.39.108
计量
  • 文章访问数:  164
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-29
  • 修回日期:  2025-06-28
  • 上网日期:  2025-07-05

/

返回文章
返回