-
飞行时间光电子谱仪(time-of-flight photoelectron spectrometer, TOF-PES)作为超快电子动力学研究的核心工具, 凭借其数十皮秒量级的飞行时间分辨率与宽能量探测范围, 在阿秒脉冲表征与强场量子过程研究中提供了不可替代的技术支撑. 本文尝试系统地总结飞行时间光电子谱仪的技术原理与发展历程, 探讨磁瓶式高分辨率谱仪技术在电子轨迹控制与收集效率提升方面的突破, 并结合双光子跃迁干涉阿秒拍频重构、阿秒条纹相机等实验技术分析其在阿秒脉冲表征中的关键作用. 此外, 还介绍了TOF技术与其他高精度探测手段之间的融合应用, 包括角分辨光电子能谱、冷靶反冲离子动量谱仪及速度成像谱仪, 展示其在获取多维电子动力学信息方面的潜力. 最后对TOF技术瓶颈以及未来发展方向进行了探讨.
Time-of-flight photoelectron spectroscopy (TOF-PES) with exceptional energy and temporal resolution has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics. This work comprehensively reviews the TOF-PES technology, its basic principles, and its crucial role in attosecond metrology. The first part in this paper introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and improving energy resolution through trajectory collimation and magnetic gradient design. We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT(reconstruction of attosecond beating by interference of two-photon transitions, and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to analyze the phase and amplitude of attosecond pulse trains with accuracy below 50 attosecond. These advances indicate that the TOF-PES is a key driving factor for temporal phase reconstruction and group delay measurement in an extreme-ultraviolet (XUV) spectral range. Then the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF) is explored, making it possible to realize the full 3D momentum-resolved detection without mechanical rotation or slits. The synergistic effect between TOF and ultrafast laser sources promotes the simultaneous resolution of energy and momentum resolution in the Brillouin zone, with applications covering topological materials, superconductors, and charge-density wave systems. Finally, this review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (cold target recoil ion momentum spectroscopy) and VMI (velocity map imaging) is evaluated, highlighting its indispensable role in resolving related electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales. Overall, this work emphasizes the central role of TOF-PES in advancing the frontiers of ultrafast science. Although current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are expected to overcome these barriers. TOF-PES, through its continuous evolution, is still a key platform for detecting quantum dynamics on the fastest known timescale. -
Keywords:
- time-of-flight photoelectron spectrometer /
- attosecond pulse characterization /
- angle-resolved photoelectron spectroscopy /
- ultrafast electron dynamics
-
-
[1] Cameron A E, Eggers Jr D F 1948 An Ion" Velocitron" (Atomic Energy Commission) p1
[2] Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150
Google Scholar
[3] Baldwin G C, Friedman S I 1967 Rev. Sci. Instrum. 38 519
Google Scholar
[4] Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967 Rev. Sci. Instrum. 38 820
Google Scholar
[5] Bachrach R Z, Brown F C, Hagström S B M 1975 J. Vac. Sci. Technol. 12 309
Google Scholar
[6] Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809
Google Scholar
[7] Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011 J. Electron Spectrosc. Relat. Phenom. 183 70
Google Scholar
[8] Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003
Google Scholar
[9] Hsu T, Hirshfield J L 1976 Rev. Sci. Instrum. 47 236
Google Scholar
[10] Beamson G, Porter H Q, Turner D W 1980 J. Phys. E: Sci. Instrum. 13 64
Google Scholar
[11] Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313
Google Scholar
[12] Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001 Rev. Sci. Instrum. 72 2543
Google Scholar
[13] Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 J. Electron Spectrosc. Relat. Phenom. 192 69
Google Scholar
[14] Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013 Rev. Sci. Instrum. 84 023106
Google Scholar
[15] Zhao K, Zhang Q, Chini M, Chang Z H 2012 Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, July 3—8, 2012 p109
[16] Zhang Q, Zhao K, Chang Z H 2014 J. Electron Spectrosc. Relat. Phenom. 195 48
Google Scholar
[17] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689
Google Scholar
[18] Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540
Google Scholar
[19] Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002
Google Scholar
[20] Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734
Google Scholar
[21] Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018 Rev. Sci. Instrum. 89 053103
Google Scholar
[22] Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119
Google Scholar
[23] Kumar M, Singhal H, Ansari A, Chakera J A 2023 Rev. Sci. Instrum. 94 023303
Google Scholar
[24] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
Google Scholar
[25] Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004 Nature 427 817
Google Scholar
[26] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443
Google Scholar
[27] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008 Science 320 1614
Google Scholar
[28] Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891
Google Scholar
[29] Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186
[30] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506
Google Scholar
[31] Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201
Google Scholar
[32] 王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫 2020 中国激光 47 415002
Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020 Chin. J. Lasers 47 415002
[33] Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080
Google Scholar
[34] Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020 Rev. Sci. Instrum. 91 043102
Google Scholar
[35] Boschini F, Zonno M, Damascelli A 2024 Rev. Mod. Phys. 96 015003
Google Scholar
[36] Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020 Science 370 1199
Google Scholar
[37] Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019 Rev. Sci. Instrum. 90 023105
Google Scholar
[38] Na M, Mills A K, Jones D J 2023 Phys. Rep. 1036 1
Google Scholar
[39] Haight R, Silberman J A, Lilie M I 1988 Rev. Sci. Instrum. 59 1941
Google Scholar
[40] Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008 Appl. Phys. A 91 211
Google Scholar
[41] Wannberg B 2009 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182
Google Scholar
[42] Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011 J. Electron Spectrosc. Relat. Phenom. 183 125
Google Scholar
[43] Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113
Google Scholar
[44] Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013 J. Electron Spectrosc. Relat. Phenom. 191 92
Google Scholar
[45] Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453
Google Scholar
[46] Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014 Nat. Commun. 5 4010
Google Scholar
[47] Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014 New J. Phys. 16 123045
Google Scholar
[48] Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017 Nat. Mater. 16 615
Google Scholar
[49] Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018 J. Electron Spectrosc. Relat. Phenom. 224 45
Google Scholar
[50] Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019 Nat. Phys. 15 27
Google Scholar
[51] Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020 Rev. Sci. Instrum. 91 123112
Google Scholar
[52] Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021 Rev. Sci. Instrum. 92 053703
Google Scholar
[53] Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113
Google Scholar
[54] Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022 Struct. Dyn. 9 024304
Google Scholar
[55] 朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌 2004 核电子学与探测技术 24 253
Google Scholar
Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004 Nucl. Electron. Detect. Technol. 24 253
Google Scholar
[56] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 物理学报 60 236
Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 236
[57] Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193
Google Scholar
[58] Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993 Phys. Rev. Lett. 71 696
Google Scholar
[59] Mergel V, Dörner R, Ullrich J, Jagutzki O, Lencinas S, Nüttgens S, Spielberger L, Unverzagt M, Cocke C L, Olson R E, Schulz M, Buck U, Zanger E, Theisinger W, Isser M, Geis S, Schmidt-Böcking H 1995 Phys. Rev. Lett. 74 2200
Google Scholar
[60] Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425
Google Scholar
[61] Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998 Phys. Rev. Lett. 80 5301
Google Scholar
[62] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
Google Scholar
[63] Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443
Google Scholar
[64] Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006 Phys. Rev. Lett. 97 193001
Google Scholar
[65] Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012 Phys. Rev. Lett. 108 073202
Google Scholar
[66] Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113
Google Scholar
[67] Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019 Sci. Adv. 5 eaau7923
Google Scholar
[68] Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020 Science 370 339
Google Scholar
[69] Eppink A T, Parker D H 1997 Rev. Sci. Instrum. 68 3477
Google Scholar
[70] Takahashi M, Cave J P, Eland J H D 2000 Rev. Sci. Instrum. 71 1337
Google Scholar
[71] Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001 Rev. Sci. Instrum. 72 3848
Google Scholar
[72] Townsend D, Minitti M P, Suits A G 2003 Rev. Sci. Instrum. 74 2530
Google Scholar
[73] Lin J J, Zhou J, Shiu W, Liu K 2003 Rev. Sci. Instrum. 74 2495
Google Scholar
[74] Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014 Rev. Sci. Instrum. 85 123303
Google Scholar
[75] Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015 Rev. Sci. Instrum. 86 096110
Google Scholar
[76] Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015 Rev. Sci. Instrum. 86 023305
Google Scholar
[77] Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021 J. Phys. Chem. A 125 5220
Google Scholar
[78] Nomerotski A 2019 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26
Google Scholar
[79] Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J 2017 Rev. Sci. Instrum. 88 11
[80] Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017 Phys. Rev. Lett. 119 123201
Google Scholar
计量
- 文章访问数: 164
- PDF下载量: 8
- 被引次数: 0