搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子Fisher信息测量的实验多体纠缠刻画

刘然 吴泽 李宇晨 陈昱全 彭新华

引用本文:
Citation:

基于量子Fisher信息测量的实验多体纠缠刻画

刘然, 吴泽, 李宇晨, 陈昱全, 彭新华

Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information

Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua
PDF
HTML
导出引用
  • 量子Fisher信息在量子度量与量子信息领域的研究中至关重要, 然而在实验中的提取却十分棘手, 尤其是对于大尺度的量子系统. 这里我们发展了利用测量量子态间重叠的方式来高效提取量子Fisher信息的方法, 对于纯态而言, 这种方法只需要在量子系统中引入一个额外的辅助比特并施加单次测量即可实现. 相对于以往的量子Fisher信息提取方法, 需要更少由测量带来的时间资源消耗, 因此高效且具有扩展性. 我们将这种方法应用于经历量子相变的三体相互作用系统中多体纠缠的刻画, 并使用核磁共振量子模拟器实验展示了该方案的可行性.
    Quantum Fisher information plays a vital role in the field of quantum metrology and quantum information, because it not only quantifies the ultimate precision bound of parameter estimation but also provides criteria for entanglement detection. Nevertheless, experimentally extracting quantum Fisher information is intractable. Quantum state tomography is a typical approach to obtaining the complete information about a quantum system and extract quantum Fisher information. However it becomes infeasible for large-scale quantum systems owing to the exponentially growing complexity. In this paper, we present a general relationship between quantum Fisher information and the overlap of quantum states. Specifically, we show that for pure states, the quantum Fisher information can be exactly extracted from the overlap, whereas for mixed states, only the lower bound can be obtained. We also develop a protocol for measuring the overlap of quantum states, which only requires one additional auxiliary qubit and a single measurement for pure state. Our protocol is more efficient and scalable than previous approaches because it requires less time and fewer measurements. We use this protocol to characterize the multiparticle entanglement in a three-body interaction system undergoing adiabatic quantum phase transition, and experimentally demonstrate its feasibility for the first time in a nuclear magnetic resonance quantum system. We conduct our experiment on a 4-qubit nuclear magnetic resonance quantum simulator, three of which are used to simulate the quantum phase transition in a three-body interaction system, and the remaining one is used as the auxiliary qubit to detect the overlap of the quantum state. We use gradient ascent pulse engineering pulses to implement the process of evolution. By measuring the auxiliary qubit, the experimental results of quantum Fisher information are obtained and match well with the theoretical predictions, thus successfully characterizing the multiparticle entanglement in a practical quantum system. We further confirm our results by performing quantum state tomography on some quantum states in the adiabatic process. The experimentally reconstructed quantum states are close to the corresponding instantaneous ground states.
      通信作者: 彭新华, xhpeng@ustc.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018 YFA0306600)、国家自然科学基金 (批准号: 11927811, 1192780017)、科技创新2030-“量子通信与量子计算机”重大项目(批准号: 2021 ZD0303205) 和量子通信与量子计算机重大项目安徽省引导性项目 (批准号: AHY050000)资助的课题
      Corresponding author: Peng Xin-Hua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2018 YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11927811, 1192780017), the Innovation Program for Quantum Science and Technology (Grant No. 2021 ZD0303205), and the Initiative in Quantum Information Technologies of Anhui Province, China (Grant No. AHY050000)
    [1]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [3]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [4]

    Liu R, Chen Y, Jiang M, Yang X D, Wu Z, Li Y C, Yuan H D, Peng X H, Du J F 2021 Npj Quantum Inf. 7 170Google Scholar

    [5]

    Niu M L, Wang Y M, Li Z J 2022 Acta. Phys. Sin. 71 090601Google Scholar

    [6]

    Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey A M, Ye J, Kaufman A M, Zoller P 2019 Phys. Rev. Lett. 123 260505Google Scholar

    [7]

    Yang X D, Thompson J, Wu Z, Gu M L, Peng X H, Du J F 2020 Npj Quantum Inf. 6 62Google Scholar

    [8]

    Koczor B, Endo S, Jones T, Matsuzaki Y, Benjamin S C 2020 New J. Phys. 22 083038Google Scholar

    [9]

    Kaubruegger R, Vasilyev D V, Schulte M, Hammerer K, Zoller P 2021 Phys. Rev. X. 11 041045

    [10]

    陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫 2021 物理学报 70 210302Google Scholar

    Chen R Y L, Zhao B C, Song Z X, Zhao X Q, Wang K, Wang X 2021 Acta. Phys. Sin. 70 210302Google Scholar

    [11]

    Marciniak C D, Feldker T, Pogorelov I, Kaubruegger R, Vasilyev D V, van Bijnen R, Schindler P, Zoller P, Blatt R, Monz T 2022 Nature 603 604Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Tóth G 2012 Phys. Rev. A 85 022322Google Scholar

    [14]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [15]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301Google Scholar

    [16]

    Hong Y, Luo S, Song H 2015 Phys. Rev. A 91 042313Google Scholar

    [17]

    Mirkhalaf S S, Smerzi A 2017 Phys. Rev. A 95 022302Google Scholar

    [18]

    Yu M, Li D X, Wang J C, Chu Y M, Yang P C, Gong M S, Goldman N, Cai J M 2021 Phys. Rev. Research 3 043122Google Scholar

    [19]

    Rath A, Branciard C, Minguzzi A, Vermersch B 2021 Phys. Rev. Lett. 127 260501Google Scholar

    [20]

    Garttner M, Hauke P, Rey A M 2018 Phys. Rev. Lett. 120 040402Google Scholar

    [21]

    Fiderer L J, Fraisse J M E, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    Yuan H 2016 Phys. Rev. Lett. 117 160801Google Scholar

    [24]

    Macrì T, Smerzi A, Pezzè L 2016 Phys. Rev. A 94 010102Google Scholar

    [25]

    Ekert A K, Alves C M, Oi D K, Horodecki M, Horodecki P, Kwek L C 2002 Phys. Rev. Lett. 88 217901Google Scholar

    [26]

    Quan H T, Song Z, Liu X F, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar

    [27]

    Zhang J, Peng X, Rajendran N, Suter D 2008 Phys. Rev. Lett. 100 100501Google Scholar

    [28]

    Peng X H, Zhang J F, Du J F, Suter D 2010 Phys. Rev. A 81 042327Google Scholar

    [29]

    Ding Z, Liu R, Radhakrishnan C, Ma W C, Peng X H, Wang Y, Byrnes T, Shi F Z, Du J F 2021 Npj Quantum Inf. 7 145Google Scholar

    [30]

    Peng X H, Zhu X W, Fang X M, Feng M, Gao K L, Yang X D, Liu M L 2001 Chem. Phys. Lett. 340 509Google Scholar

    [31]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [33]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2018 物理学报 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2018 Acta. Phys. Sin. 64 167601Google Scholar

    [34]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta. Phys. Sin. 67 220301Google Scholar

    [35]

    Wang T L, Wu L N, Yang W, Jin G R, Lambert N, Nori F 2014 New J. Phys. 16 063039Google Scholar

    [36]

    Yin S Y, Song J, Zhang Y J, Liu S T 2019 Phys. Rev. B 100 184417Google Scholar

  • 图 1  测量量子态重叠的量子线路 (a) 当待测量子系统S是混态时, 系统中需要添加一个辅助量子比特A和额外的待测系统S的复制来测量${\mathscr{D}}$; (b) 当待测量子系统S是纯态时, 系统中仅需要添加一个额外的辅助量子比特A来测量${\mathscr{D}}$

    Fig. 1.  Quantum circuit for measuring the overlap ${\mathscr{D}}$ of quanum states: (a) An auxiliary qubit A and an additional copy of the system S are added into the system for measuring ${\mathscr{D}}$ when S is mixed; (b) only an auxiliary qubit A are added into the system for measuring ${\mathscr{D}}$ when S is pure.

    图 2  利用量子Fisher信息实现实验多体纠缠刻画示意图 (a) 基于平均量子Fisher信息的多体纠缠判据; (b) 用于实验模拟耦合了辅助量子比特的三自旋相互作用系统13C-iodotriuroethylene样品分子结构及其他相关参数. 对角部分与非对角部分分别表示化学位移与J耦合大小(单位均为Hz)

    Fig. 2.  Schematic diagram of experimentally characterizing the multiparticle entanglement in three-body interaction system with quantum Fisher information: (a) Criteria for multiparticle entanglement based on the average of quantum Fisher information; (b) molecular structure and the relevant parameters of 13C-iodotriuroethylene for simulating the three-body interaction system coupling with an auxiliary qubit. The diagonal and off-diagonal elements represent chemical shifts and J-couplings (all in Hz), respectively.

    图 3  利用量子态重叠提取到的平均量子Fisher信息的实验结果 (a), (b), (c)分别对应哈密顿量$H_{zz}, H_{zzz}, H_{zzz}^\prime$的结果

    Fig. 3.  Experimental result of the average of quantum Fisher information extracted from overlap: (a), (b), (c) correspond to the result of Hamiltonian $H_{zz}, H_{zzz}, H_{zzz}^\prime$, respectively.

    图 4  绝热过程制备的基态密度矩阵的实验重构结果 (a), (b), (c)分别对应哈密顿量$H_{zz}, H_{zzz}, H_{zzz}^\prime$

    Fig. 4.  Experimentally reconstructed density matrices of ground states prepared by adiabatic process: (a), (b), (c) correspond to the result of Hamiltonian $H_{zz}, H_{zzz}, H_{zzz}^\prime$, respectively.

  • [1]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401Google Scholar

    [2]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222Google Scholar

    [3]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta. Phys. Sin. 68 040601Google Scholar

    [4]

    Liu R, Chen Y, Jiang M, Yang X D, Wu Z, Li Y C, Yuan H D, Peng X H, Du J F 2021 Npj Quantum Inf. 7 170Google Scholar

    [5]

    Niu M L, Wang Y M, Li Z J 2022 Acta. Phys. Sin. 71 090601Google Scholar

    [6]

    Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey A M, Ye J, Kaufman A M, Zoller P 2019 Phys. Rev. Lett. 123 260505Google Scholar

    [7]

    Yang X D, Thompson J, Wu Z, Gu M L, Peng X H, Du J F 2020 Npj Quantum Inf. 6 62Google Scholar

    [8]

    Koczor B, Endo S, Jones T, Matsuzaki Y, Benjamin S C 2020 New J. Phys. 22 083038Google Scholar

    [9]

    Kaubruegger R, Vasilyev D V, Schulte M, Hammerer K, Zoller P 2021 Phys. Rev. X. 11 041045

    [10]

    陈然一鎏, 赵犇池, 宋旨欣, 赵炫强, 王琨, 王鑫 2021 物理学报 70 210302Google Scholar

    Chen R Y L, Zhao B C, Song Z X, Zhao X Q, Wang K, Wang X 2021 Acta. Phys. Sin. 70 210302Google Scholar

    [11]

    Marciniak C D, Feldker T, Pogorelov I, Kaubruegger R, Vasilyev D V, van Bijnen R, Schindler P, Zoller P, Blatt R, Monz T 2022 Nature 603 604Google Scholar

    [12]

    Hyllus P, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L, Smerzi A 2012 Phys. Rev. A 85 022321Google Scholar

    [13]

    Tóth G 2012 Phys. Rev. A 85 022322Google Scholar

    [14]

    Hauke P, Heyl M, Tagliacozzo L, Zoller P 2016 Nat. Phys. 12 778Google Scholar

    [15]

    Li N, Luo S L 2013 Phys. Rev. A 88 014301Google Scholar

    [16]

    Hong Y, Luo S, Song H 2015 Phys. Rev. A 91 042313Google Scholar

    [17]

    Mirkhalaf S S, Smerzi A 2017 Phys. Rev. A 95 022302Google Scholar

    [18]

    Yu M, Li D X, Wang J C, Chu Y M, Yang P C, Gong M S, Goldman N, Cai J M 2021 Phys. Rev. Research 3 043122Google Scholar

    [19]

    Rath A, Branciard C, Minguzzi A, Vermersch B 2021 Phys. Rev. Lett. 127 260501Google Scholar

    [20]

    Garttner M, Hauke P, Rey A M 2018 Phys. Rev. Lett. 120 040402Google Scholar

    [21]

    Fiderer L J, Fraisse J M E, Braun D 2019 Phys. Rev. Lett. 123 250502Google Scholar

    [22]

    Pezzè L, Smerzi A, Oberthaler M K, Schmied R, Treutlein P 2018 Rev. Mod. Phys. 90 035005Google Scholar

    [23]

    Yuan H 2016 Phys. Rev. Lett. 117 160801Google Scholar

    [24]

    Macrì T, Smerzi A, Pezzè L 2016 Phys. Rev. A 94 010102Google Scholar

    [25]

    Ekert A K, Alves C M, Oi D K, Horodecki M, Horodecki P, Kwek L C 2002 Phys. Rev. Lett. 88 217901Google Scholar

    [26]

    Quan H T, Song Z, Liu X F, Zanardi P, Sun C P 2006 Phys. Rev. Lett. 96 140604Google Scholar

    [27]

    Zhang J, Peng X, Rajendran N, Suter D 2008 Phys. Rev. Lett. 100 100501Google Scholar

    [28]

    Peng X H, Zhang J F, Du J F, Suter D 2010 Phys. Rev. A 81 042327Google Scholar

    [29]

    Ding Z, Liu R, Radhakrishnan C, Ma W C, Peng X H, Wang Y, Byrnes T, Shi F Z, Du J F 2021 Npj Quantum Inf. 7 145Google Scholar

    [30]

    Peng X H, Zhu X W, Fang X M, Feng M, Gao K L, Yang X D, Liu M L 2001 Chem. Phys. Lett. 340 509Google Scholar

    [31]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [32]

    Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S J 2005 J. Magn. Reson. 172 296Google Scholar

    [33]

    李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰 2018 物理学报 64 167601Google Scholar

    Li J, Cui J Y, Yang X D, Luo Z H, Pan J, Yu Q, Li Z K, Peng X H, Du J F 2018 Acta. Phys. Sin. 64 167601Google Scholar

    [34]

    孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar

    Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta. Phys. Sin. 67 220301Google Scholar

    [35]

    Wang T L, Wu L N, Yang W, Jin G R, Lambert N, Nori F 2014 New J. Phys. 16 063039Google Scholar

    [36]

    Yin S Y, Song J, Zhang Y J, Liu S T 2019 Phys. Rev. B 100 184417Google Scholar

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息. 物理学报, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 李俊青, 黄丽, 崔世杰, 王银珠. 量子态在两体和k体下基于min相对熵的量子关联测度. 物理学报, 2023, 72(1): 010302. doi: 10.7498/aps.72.20221293
    [3] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [6] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] 杨乐, 李凯, 戴宏毅, 张明. 基于量子算法的量子态层析新方案. 物理学报, 2019, 68(14): 140301. doi: 10.7498/aps.68.20190157
    [8] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [9] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响. 物理学报, 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [11] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [12] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输. 物理学报, 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [13] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [14] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控. 物理学报, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [15] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [16] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案. 物理学报, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [17] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备. 物理学报, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [18] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [19] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [20] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
计量
  • 文章访问数:  4787
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-04-25
  • 上网日期:  2023-04-26
  • 刊出日期:  2023-06-05

/

返回文章
返回