搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子-光子相互作用下耗散的光腔中的量子相变和奇异点

刘妮 罗芸青 梁九卿

引用本文:
Citation:

原子-光子相互作用下耗散的光腔中的量子相变和奇异点

刘妮, 罗芸青, 梁九卿

Quantum phase transition and exceptional points in a dissipative optical cavity with nonlinear atom-photon interaction

Liu Ni, Luo Yunqing, Liang J. -Q.
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 基于Dicke模型引入非厄米原子-场耦合,本文通过调节非线性原子-光子相互作用研究开放Dicke模型的量子相变和奇异点.通过厄米算符进行相似变换,然后对系统对角化得到有效的非厄米哈密顿量,并利用自旋相干态变分法计算宏观量子态的能量泛函.非厄米Dicke模型主要结果是:系统超辐射相和相关量子相变完全消失,出现了不稳定的非零光子数态;在泵浦场产生的非线性原子-光子相互作用影响下,系统的量子相变发生了显著变化;能谱出现两个奇异点,两个奇异点之间的能谱为复数,而其他区域为纯实数;红、蓝腔-泵浦场失谐调控下,相图显示了丰富的量子相变.随着原子-场耦合强度的增加,系统出现从超辐射相到正常相的新奇反向量子相变,不同于Dicke模型.
    Dicke model, as an important many-body model in quantum optics, describes the interaction between multiple identical two-level atoms and a quantized electromagnetic field. This spin-boson model shows collective phenomena in light-matter interaction systems and can undergo a second-order quantum phase transition from a normal phase to a superradiant phase when the coupling strength between the two-level atoms and the optical field exceeds a critical value. Dicke model embodies unique many-body quantum theories. And it has been widely studied and obtains many significant research results in quantum information, quantum process and other quantum systems. Meanwhile, Dicke model also has wide applications in quantum optics and condensed matter physics.
    The extended Dicke model, describing the interaction of a Bose-Einstein condensate in an optical cavity, provides a remarkable platform for studying extraordinary quantum phase transitions in theory and experiment. Based on the recent experiment about non-Hermitian coupling between two long-lived atomic spin waves in an optical cavity, in this paper we use spin-coherent-state variational method and present the macroscopic quantum-state energies of the non-Hermitian Dicke model
    The spin coherent states variational method has an advantage in the theoretical research of macroscopic quantum states, especially in the normal and the inverted pseudospin states. The variational method is using optical coherent states and atomic extremum spin coherent states as the trial wave functions. A Hermitian transformation operator is proposed to diagonalize the non-Hermitian Hamiltonian, which differs from the ordinary quantum mechanics where the transformation operator must be unitary. In here, the energy function is not necessarily real in the entire coupling region. Beyond an exceptional point, the spectrum becomes complex and introducing biorthogonal sets of atomic extremum states is necessary to evaluate the average quantities.
    The normal phase (for the zero average photon number) possesses real energies and atomic populations. The non-Hermitian interaction destroys the superradiant phase (for the stable nonzero average photon number) and leads to the absence of quantum phase transition. However, the introduced atom-photon interaction, which is induced by the pump field in the experiments, can change dramatically the situation. The pump field could balance the loss by the non-Hermitian atom-photon interaction to achieve the superradiant phase.
    An interesting double exceptional points are observed in the energy functional. There is the real spectrum below the first exceptional point and beyond the second exceptional point, while the complex spectrum between the two exceptional points. The superradiant phase appears only beyond a critical value, which is related to the nonlinear interaction and the pump laser. An new and inverted quantum phase transition, which is from the superradiant phase to the normal phase, is observed by modulating the atom-field coupling strength. The superradiant phase of the population inversion state appears for a negative effective frequency and a large atom-photon interaction. The influence of the dissipative coupling may be observed experimentally with cold atoms in an optical cavity. All adopted parameters is the actual experimental parameters in this paper.
  • [1]

    Bender C M, Boettcher S 1998Phys. Rev. Lett. 805243

    [2]

    Bender C M, Boettcher S, Meisinger P N 1999J. Math. Phys. 40 2201

    [3]

    Bender C M, Brody D C, Jones H F 2002Phys. Rev. Lett. 89 270401

    [4]

    Bender C M, Brody D C, Jones H F 2004Phys. Rev. D. 70 025001

    [5]

    Bender C M 2007Rep. Prog. Phys. 70 947

    [6]

    Heiss W D 2004J. Phys. A. 37 2455

    [7]

    Brody D C, Graefe E-M 2012Phys. Rev. Lett. 109 230405

    [8]

    Roccati F, Palma G M, Bagarello F, Ciccarello F 2022Open Syst. Inf. Dyn. 29 2250004

    [9]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011Phys. Rev. Lett. 106 213901

    [10]

    Sticlet D, Dóra B, C. P. Moca C P 2022Phys. Rev. Lett. 128 016802

    [11]

    Peng Y, Jie J W, Yu D P, Wang Y C 2022Phys. Rev. B. 106 L161402

    [12]

    Yao S Y, Wang Z 2018Phys. Rev. Lett. 121, 086803

    [13]

    Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024Phys. Rev. Lett. 132 256902

    [14]

    Zhang C, Liang P F, Lambert N, Cirio M 2024Phys. Rev. Res. 6 023012

    [15]

    Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024Phys. Rev. X Quantum 5 010344

    [16]

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67183701(in Chinese) [黄珊,刘妮,梁九卿2018物理学报67183701]

    [17]

    Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020Phys. Rev. Lett. 125 260601

    [18]

    Turkeshi X, Schiró M 2023Phys. Rev. B 107 L020403

    [19]

    Feng L, Wong Z J, Ma R-M, Wang Y, Zhang X 2014Science 346 972

    [20]

    Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017Nature 548 192

    [21]

    Dicke R H 1954Phys. Rev. 93 99

    [22]

    Zhao X Q, Liu N, Liang J Q 2014Phys. Rev. A. 90 023622

    [23]

    Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012Phys. Rev. A 85 013817

    [24]

    Keeling J, Bhaseen M J, Simons B D 2010Phys. Rev.Lett. 105 043001

    [25]

    Buijsman W, Gritsev V, Sprik R 2017Phys. Rev. Lett. 118 080601

    [26]

    Das P, Bhakuni D S, Sharma A 2023Phys. Rev. A. 107 043706

    [27]

    Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018Phys. Rev. A. 98 043805

    [28]

    Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020Eur. Phys. J. D. 74 200

    [29]

    Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019Front. Phys. 14 52602

    [30]

    Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73240301(in Chinese) [赵秀琴,张文慧2024物理学报732403301]

    [31]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007Nature 450272

    [32]

    Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007Nature 450 268

    [33]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007Phys. Rev. A. 75 013804

    [34]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010Nature 464 1301

    [35]

    Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016Nat. Phys. 2 1139

    [36]

    Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020Phys. Rev. Lett. 124 030401

    [37]

    Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023Nature Nanotech. 18 706

    [38]

    Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024Phys. Rev. Lett. 133 133601

    [39]

    Markham D, Vedral X 2003Phys. Rev. A. 67 042113

    [40]

    Liu N, Huang S, Liang J Q 2022Results Phys. 40 105813

    [41]

    Mostafazadeh A 2002Nucl. Phys. B. 640 419

    [42]

    Mostafazadeh A 2002J. Math. Phys. 43 205

    [43]

    Mostafazadeh A 2007Phys. Lett. B. 650 208

    [44]

    Gu Y, Bai X M, Hao X L, Liang J Q 2022Results Phys. 38 105561

    [45]

    Gu Y, Hao X L, Liang J Q 2022Ann. Phys.(Berlin). 534 2200069

    [46]

    Liang J Q, Wei L F 2023New Advances in Quantum Physics (Third Edition) (Beijing: Science Press) (in Chinese) [梁九卿,韦联福2023量子物理新进展(北京,科学出版社)]

    [47]

    Lian J L, Zhang Y W, Liang J Q 2012Chin. Phys. Lett. 29 060302

    [48]

    Chen G, Li J Q, Liang J Q 2006Phys. Rev. A. 74 054101

  • [1] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, doi: 10.7498/aps.73.20241103
    [2] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, doi: 10.7498/aps.73.20240665
    [3] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, doi: 10.7498/aps.72.20230701
    [4] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, doi: 10.7498/aps.72.20230381
    [5] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, doi: 10.7498/aps.71.20221706
    [6] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, doi: 10.7498/aps.71.20220842
    [7] 施婷婷, 张露丹, 张帅宁, 张威. 两量子比特系统中相互作用对高阶奇异点的影响. 物理学报, doi: 10.7498/aps.70.20220716
    [8] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, doi: 10.7498/aps.70.20210778
    [9] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, doi: 10.7498/aps.70.20202066
    [10] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, doi: 10.7498/aps.69.20191773
    [11] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, doi: 10.7498/aps.69.20191632
    [12] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵. 物理学报, doi: 10.7498/aps.67.20172087
    [13] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, doi: 10.7498/aps.67.20180855
    [14] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, doi: 10.7498/aps.67.20172755
    [15] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, doi: 10.7498/aps.66.180302
    [16] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, doi: 10.7498/aps.63.134204
    [17] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, doi: 10.7498/aps.61.220501
    [18] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, doi: 10.7498/aps.61.220302
    [19] 蔡 卓, 陆文彬, 刘拥军. 交错Dzyaloshinskii-Moriya相互作用对反铁磁Heisenberg链纠缠的影响. 物理学报, doi: 10.7498/aps.57.7267
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  20
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回