-
基于Dicke模型引入非厄米原子-场耦合,本文通过调节非线性原子-光子相互作用研究开放Dicke模型的量子相变和奇异点.通过厄米算符进行相似变换,然后对系统对角化得到有效的非厄米哈密顿量,并利用自旋相干态变分法计算宏观量子态的能量泛函.非厄米Dicke模型主要结果是:系统超辐射相和相关量子相变完全消失,出现了不稳定的非零光子数态;在泵浦场产生的非线性原子-光子相互作用影响下,系统的量子相变发生了显著变化;能谱出现两个奇异点,两个奇异点之间的能谱为复数,而其他区域为纯实数;红、蓝腔-泵浦场失谐调控下,相图显示了丰富的量子相变.随着原子-场耦合强度的增加,系统出现从超辐射相到正常相的新奇反向量子相变,不同于Dicke模型.
-
关键词:
- 非厄米Dicke模型 /
- 原子-光子相互作用 /
- 量子相变 /
- 奇异点
Dicke model, as an important many-body model in quantum optics, describes the interaction between multiple identical two-level atoms and a quantized electromagnetic field. This spin-boson model shows collective phenomena in light-matter interaction systems and can undergo a second-order quantum phase transition from a normal phase to a superradiant phase when the coupling strength between the two-level atoms and the optical field exceeds a critical value. Dicke model embodies unique many-body quantum theories. And it has been widely studied and obtains many significant research results in quantum information, quantum process and other quantum systems. Meanwhile, Dicke model also has wide applications in quantum optics and condensed matter physics.
The extended Dicke model, describing the interaction of a Bose-Einstein condensate in an optical cavity, provides a remarkable platform for studying extraordinary quantum phase transitions in theory and experiment. Based on the recent experiment about non-Hermitian coupling between two long-lived atomic spin waves in an optical cavity, in this paper we use spin-coherent-state variational method and present the macroscopic quantum-state energies of the non-Hermitian Dicke model
The spin coherent states variational method has an advantage in the theoretical research of macroscopic quantum states, especially in the normal and the inverted pseudospin states. The variational method is using optical coherent states and atomic extremum spin coherent states as the trial wave functions. A Hermitian transformation operator is proposed to diagonalize the non-Hermitian Hamiltonian, which differs from the ordinary quantum mechanics where the transformation operator must be unitary. In here, the energy function is not necessarily real in the entire coupling region. Beyond an exceptional point, the spectrum becomes complex and introducing biorthogonal sets of atomic extremum states is necessary to evaluate the average quantities.
The normal phase (for the zero average photon number) possesses real energies and atomic populations. The non-Hermitian interaction destroys the superradiant phase (for the stable nonzero average photon number) and leads to the absence of quantum phase transition. However, the introduced atom-photon interaction, which is induced by the pump field in the experiments, can change dramatically the situation. The pump field could balance the loss by the non-Hermitian atom-photon interaction to achieve the superradiant phase.
An interesting double exceptional points are observed in the energy functional. There is the real spectrum below the first exceptional point and beyond the second exceptional point, while the complex spectrum between the two exceptional points. The superradiant phase appears only beyond a critical value, which is related to the nonlinear interaction and the pump laser. An new and inverted quantum phase transition, which is from the superradiant phase to the normal phase, is observed by modulating the atom-field coupling strength. The superradiant phase of the population inversion state appears for a negative effective frequency and a large atom-photon interaction. The influence of the dissipative coupling may be observed experimentally with cold atoms in an optical cavity. All adopted parameters is the actual experimental parameters in this paper.-
Keywords:
- Non-Hermitian Dicke model /
- Nonlinear atom-photon interaction /
- Quantum phase transition /
- Exceptional point
-
[1] Bender C M, Boettcher S 1998Phys. Rev. Lett. 805243
[2] Bender C M, Boettcher S, Meisinger P N 1999J. Math. Phys. 40 2201
[3] Bender C M, Brody D C, Jones H F 2002Phys. Rev. Lett. 89 270401
[4] Bender C M, Brody D C, Jones H F 2004Phys. Rev. D. 70 025001
[5] Bender C M 2007Rep. Prog. Phys. 70 947
[6] Heiss W D 2004J. Phys. A. 37 2455
[7] Brody D C, Graefe E-M 2012Phys. Rev. Lett. 109 230405
[8] Roccati F, Palma G M, Bagarello F, Ciccarello F 2022Open Syst. Inf. Dyn. 29 2250004
[9] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011Phys. Rev. Lett. 106 213901
[10] Sticlet D, Dóra B, C. P. Moca C P 2022Phys. Rev. Lett. 128 016802
[11] Peng Y, Jie J W, Yu D P, Wang Y C 2022Phys. Rev. B. 106 L161402
[12] Yao S Y, Wang Z 2018Phys. Rev. Lett. 121, 086803
[13] Hou J K, Zhu J F, Ma R X, Xue B Y, Zhu Y C, Lin J T, Jiang X S, Zheng Y L, Chen X F, Cheng Y, Ge L, Wan W J 2024Phys. Rev. Lett. 132 256902
[14] Zhang C, Liang P F, Lambert N, Cirio M 2024Phys. Rev. Res. 6 023012
[15] Masson S J, Covey J P, Will S, Asenjo- Garcia A 2024Phys. Rev. X Quantum 5 010344
[16] Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67183701(in Chinese) [黄珊,刘妮,梁九卿2018物理学报67183701]
[17] Matsumoto N, Kawabata K, Ashida Y, Furukawa S, Ueda M 2020Phys. Rev. Lett. 125 260601
[18] Turkeshi X, Schiró M 2023Phys. Rev. B 107 L020403
[19] Feng L, Wong Z J, Ma R-M, Wang Y, Zhang X 2014Science 346 972
[20] Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, Yang L 2017Nature 548 192
[21] Dicke R H 1954Phys. Rev. 93 99
[22] Zhao X Q, Liu N, Liang J Q 2014Phys. Rev. A. 90 023622
[23] Bhaseen M J, Mayoh J, Simons B D, Keeling J 2012Phys. Rev. A 85 013817
[24] Keeling J, Bhaseen M J, Simons B D 2010Phys. Rev.Lett. 105 043001
[25] Buijsman W, Gritsev V, Sprik R 2017Phys. Rev. Lett. 118 080601
[26] Das P, Bhakuni D S, Sharma A 2023Phys. Rev. A. 107 043706
[27] Rodriguez J P J, Chilingaryan S A, Rodríguez-Lara B M 2018Phys. Rev. A. 98 043805
[28] Guerra C A E, Mahecha-Gómez J, Hirsch J G 2020Eur. Phys. J. D. 74 200
[29] Zhu G L, Lü X Y, Bin S W, You C, Wu Y 2019Front. Phys. 14 52602
[30] Zhao X Q, Zhang W H 2024 Acta Phys. Sin. 73240301(in Chinese) [赵秀琴,张文慧2024物理学报732403301]
[31] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007Nature 450272
[32] Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T 2007Nature 450 268
[33] Dimer F, Estienne B, Parkins A S, Carmichael H J 2007Phys. Rev. A. 75 013804
[34] Baumann K, Guerlin C, Brennecke F, Esslinger T 2010Nature 464 1301
[35] Peng P, Cao W X, Shen C, Qu W Z, Wen J M, Jiang L, Xiao Y H 2016Nat. Phys. 2 1139
[36] Cao W X, Lu X D, Meng X, Sun J, Shen H, Xiao Y H 2020Phys. Rev. Lett. 124 030401
[37] Li A D, Wei H, Cotrufo M, Chen W J, Mann S, Ni X, Xu B C, Chen J F, Wang J, Fan S H, Qiu C W, Alù A, Chen L 2023Nature Nanotech. 18 706
[38] Zhang Z M, Zhang F B, Xu Z X, Hu Y, Bao H, Shen H 2024Phys. Rev. Lett. 133 133601
[39] Markham D, Vedral X 2003Phys. Rev. A. 67 042113
[40] Liu N, Huang S, Liang J Q 2022Results Phys. 40 105813
[41] Mostafazadeh A 2002Nucl. Phys. B. 640 419
[42] Mostafazadeh A 2002J. Math. Phys. 43 205
[43] Mostafazadeh A 2007Phys. Lett. B. 650 208
[44] Gu Y, Bai X M, Hao X L, Liang J Q 2022Results Phys. 38 105561
[45] Gu Y, Hao X L, Liang J Q 2022Ann. Phys.(Berlin). 534 2200069
[46] Liang J Q, Wei L F 2023New Advances in Quantum Physics (Third Edition) (Beijing: Science Press) (in Chinese) [梁九卿,韦联福2023量子物理新进展(北京,科学出版社)]
[47] Lian J L, Zhang Y W, Liang J Q 2012Chin. Phys. Lett. 29 060302
[48] Chen G, Li J Q, Liang J Q 2006Phys. Rev. A. 74 054101
计量
- 文章访问数: 20
- PDF下载量: 2
- 被引次数: 0