搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模Dicke模型的一级量子相变

俞立先 梁奇锋 汪丽蓉 朱士群

引用本文:
Citation:

双模Dicke模型的一级量子相变

俞立先, 梁奇锋, 汪丽蓉, 朱士群

Firstorder quantum phase transition in the two-mode Dicke model

Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun
PDF
导出引用
  • 多光场与多粒子相互作用的多模Dicke模型不但存在着更为丰富的量子相,而且在量子信息中有着重要的应用. 本文运用Holstein-Primakoff变换和玻色扩展法研究双模Dicke模型的基态特性并从理论上发现了一个新的一级量子相变. 该相变在实验上可以通过测量平均光子数或原子布居数进行观察.
    The multi-mode Dicke model, which describes many atoms interacting with the multi-mode photons, has attracted much attention; it not only exhibits rich quantum phases, but also has an important application in quantum information. In this paper, we explore the ground-state properties of the two-mode Dicke model by the Holstein-Primakoff transformation and Boson expansion method, and theoretically predict a new first-order quantum phase transition. In the experiment, this quantum phase transition could be detected by measuring the mean-photon number or the atom population.
    • 基金项目: 国家自然科学基金(批准号:11074184,11275129,61275211)、浙江省自然科学基金(批准号:LY13A040001)和浙江省教育厅科研项目(批准号:Y201122352)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074184, 11275129, 61275211), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13A040001), and the Scientific Research Fundation of the Education Department of Zhejiang Province, China (Grant No. Y201122352).
    [1]

    Sachdev S 1999 Quantum Phase Transitions (UK:Cambridge UniversityPress)

    [2]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [3]

    Safi I, Saleur H 2004 Phys. Rev. Lett. 93 126602

    [4]

    Goldstein M, GefenY, Berkovits R 2011 Phys. Rev. B 83 245112

    [5]

    Zhu S L 2006 Physics 35 11 (in Chinese) [朱诗亮 2006 物理 35 11]

    [6]

    Leviatan A, Macek M 2012 Phys. Lett. B 714 110

    [7]

    Goussev A, Jalabert R A, Pastawski H M, Wisniacki D 2012 Scholarpedia 7 11687

    [8]

    Tsang M 2013 Phys. Rev. A 88 021801

    [9]

    Li S C, Fu L B, Li F L 2013 Phys. Rev. A 88 013602

    [10]

    Wang Li, Libin Fu 2013 Phys. Rev. A 87 053612

    [11]

    Zhang X Z, Song Z 2013 Phys. Rev. A 87 012114

    [12]

    Liu N 2013 Acta Phys. Sin. 62 013402 (in Chinese)[刘妮 2013 物理学报 62 013402]

    [13]

    Dicke R H 1954 Phys. Rev. 93 99

    [14]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [15]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831

    [16]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [17]

    Castaños O, Nahmad-Achar E, López-Peña R, Hirsch J G 2012 Phys. Rev. A 86 023814

    [18]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [19]

    Lambert N, Emary C, Brandes T 2005 Phys. Rev. A 71 053804

    [20]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese)[宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [21]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [22]

    Nataf P, Ciuti C 2010 Nat. Commun. 1 7 2

    [23]

    Chen G, Chen Z D, Liang J Q 2007 Phys. Rev. A 76 055803

    [24]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [25]

    Emeljanov V I, Klimontovich Y L 1976 Phys. Lett. 59 366

    [26]

    Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402

    [27]

    Buchhold M, Strack P, Sachdev S, Diehl S 2013 Phys. Rev. A 87 063622

    [28]

    Strack P, Sachdev S 2011 Phys. Rev. Lett. 107 277202

    [29]

    Wickenbrock A, Hemmerling M, Robb G R M, Emary C, Renzoni F 2013 Phys. Rev. A. 87 043817

    [30]

    Larson J, Levin S 2009 Phys. Rev. Lett. 103 013602

    [31]

    Larson J 2011 Phys. Rev. A 83 052103

    [32]

    Larson J 2008 Phys. Rev. A 78 033833

    [33]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [34]

    Holstein T, Primakoff H 1949 Phys. Rev. 58 1098

    [35]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [36]

    Bell S, Crighton J S 1981 Chem. Phys. Lett. 82 122

  • [1]

    Sachdev S 1999 Quantum Phase Transitions (UK:Cambridge UniversityPress)

    [2]

    Vojta M 2003 Rep. Prog. Phys. 66 2069

    [3]

    Safi I, Saleur H 2004 Phys. Rev. Lett. 93 126602

    [4]

    Goldstein M, GefenY, Berkovits R 2011 Phys. Rev. B 83 245112

    [5]

    Zhu S L 2006 Physics 35 11 (in Chinese) [朱诗亮 2006 物理 35 11]

    [6]

    Leviatan A, Macek M 2012 Phys. Lett. B 714 110

    [7]

    Goussev A, Jalabert R A, Pastawski H M, Wisniacki D 2012 Scholarpedia 7 11687

    [8]

    Tsang M 2013 Phys. Rev. A 88 021801

    [9]

    Li S C, Fu L B, Li F L 2013 Phys. Rev. A 88 013602

    [10]

    Wang Li, Libin Fu 2013 Phys. Rev. A 87 053612

    [11]

    Zhang X Z, Song Z 2013 Phys. Rev. A 87 012114

    [12]

    Liu N 2013 Acta Phys. Sin. 62 013402 (in Chinese)[刘妮 2013 物理学报 62 013402]

    [13]

    Dicke R H 1954 Phys. Rev. 93 99

    [14]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [15]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831

    [16]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [17]

    Castaños O, Nahmad-Achar E, López-Peña R, Hirsch J G 2012 Phys. Rev. A 86 023814

    [18]

    Song L J, Yan D, Ma J, Wang X G 2009 Phys. Rev. E 79 046220

    [19]

    Lambert N, Emary C, Brandes T 2005 Phys. Rev. A 71 053804

    [20]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese)[宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [21]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [22]

    Nataf P, Ciuti C 2010 Nat. Commun. 1 7 2

    [23]

    Chen G, Chen Z D, Liang J Q 2007 Phys. Rev. A 76 055803

    [24]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [25]

    Emeljanov V I, Klimontovich Y L 1976 Phys. Lett. 59 366

    [26]

    Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402

    [27]

    Buchhold M, Strack P, Sachdev S, Diehl S 2013 Phys. Rev. A 87 063622

    [28]

    Strack P, Sachdev S 2011 Phys. Rev. Lett. 107 277202

    [29]

    Wickenbrock A, Hemmerling M, Robb G R M, Emary C, Renzoni F 2013 Phys. Rev. A. 87 043817

    [30]

    Larson J, Levin S 2009 Phys. Rev. Lett. 103 013602

    [31]

    Larson J 2011 Phys. Rev. A 83 052103

    [32]

    Larson J 2008 Phys. Rev. A 78 033833

    [33]

    Tavis M, Cummings F W 1968 Phys. Rev. 170 379

    [34]

    Holstein T, Primakoff H 1949 Phys. Rev. 58 1098

    [35]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [36]

    Bell S, Crighton J S 1981 Chem. Phys. Lett. 82 122

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 保安. 各向异性ruby晶格中费米子体系的Mott相变. 物理学报, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [5] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [6] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [7] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [8] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [9] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [10] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [11] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [12] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [14] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [15] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [17] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [18] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
    [19] 闫海青, 唐 晨, 张 皞, 刘 铭, 张桂敏. 半导体束缚激子基态能的变尺度法. 物理学报, 2004, 53(11): 3877-3881. doi: 10.7498/aps.53.3877
    [20] 常加峰, 曾祥华, 周朋霞, 毕桥. 透镜型量子点中类氢杂质基态能的计算. 物理学报, 2004, 53(4): 978-983. doi: 10.7498/aps.53.978
计量
  • 文章访问数:  8280
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2013-12-16
  • 刊出日期:  2014-07-05

/

返回文章
返回