搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变

黄珊 刘妮 梁九卿

引用本文:
Citation:

光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变

黄珊, 刘妮, 梁九卿

Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity

Huang Shan, Liu Ni, Liang Jiu-Qing
PDF
导出引用
  • 研究了单模光腔中两组分玻色-爱因斯坦凝聚的基态性质和相关的量子相变.通过利用自旋相干态变换将等效赝自旋哈密顿算符对角化并求得基态能量泛函.基态能量泛函对其经典场变量进行变分并取极小值,得到光子数解和相边界曲线.通过稳定性讨论发现系统除了出现正常相和超辐射相之外,还得到了多稳的宏观量子态;受激辐射来自于原子数反转的集体态,单组分的Dicke系统中并没有此现象;受激辐射只能从一组分的原子中产生,而另外的仍保持在普通超辐射状态.通过调整相关的原子-场耦合强度和频率失谐,超辐射和受激辐射态的顺序可以在原子的两个组分之间互换.
    Dicke model describes a collective interaction between the two-level atoms and the light cavity and has been predicted to show a peculiar quantum phase transition, which is a second-order phase transition from a normal phase (in a weak-coupling strength) to a superradiant phase (in a strong-coupling strength). The model plays an important role in illustrating the quantum ground-state properties of many-body macroscopic quantum states. In the experiment, Dicke quantum phase transition in an open system could be formed by a Bose-Einstein condensate coupled to a high-finesse optical cavity. This experiment on the Bose-Einstein condensate trapped in the optical cavity have opened new frontiers, which could combine the cold atoms with quantum optics and makes it possible to enter into the strongly coupled regime of cavity quantum electrodynamics. In strong coupled regime, the atoms exchange the photons many times before spontaneous emission and cavity losses set in. It has become a hot research topic in recent years and plays an important role in many fields of modern physics, such as condensed matter physics, nuclear physics, etc. It can be applied to the manipulation of the geometric phase and entanglement in quantum information and computing. Quantum phase transition has been widely studied for the Dicke model as a typical example. Many different research methods about the mean-field approximation have been used to analyze the ground state properties of the Dicke model. In this paper, we study the ground state properties of two-component Bose-Einstein condensate in a single-mode cavity. Meanwhile, the associated quantum phase transition is described by the spin-coherent-state variational method, whose advantage is that the ground state energy and wave function can be obtained without the thermodynamic limit. By taking the average in the boson coherent state, we obtain an equivalent effective pesudospin Hamiltonian, which will be diagonalized by using the spin coherent state. Finally, we can obtain the energy functional, which is the basics of the variation to obtain the numerical solution of photon number and the expression of the atomic number and the ground state energy. This paper presents a rich phase diagram, which can be manipulated by changing the atom-field coupling imbalance between two components and the atom-field frequency detuning. While in the single-mode Dicke model there exist only the normal phase and the superradiation phase. When the frequency of one component atom is zero or the frequency of the two component atoms are equal in optical cavity, the system returns to the standard Dicke model, in which there occurs the second-order phase transition from the normal phase to the superradiant phase by adjusting the atom-field coupling. In conclusion, we discover that the stimulated radiation comes from the collective state of atomic population inversion, which does not exist in the single-mode Dicke model. Meanwhile, the new stimulated-radiation state S and S, which can only be produced by one component of the atom, are observed in the two-component Bose-Einstein condensates in the single-mode optical cavity. By adjusting the atom-field coupling imbalance and the atom-field frequency detuning (the blue or red detuning), the order of the superradiation state and the stimulated-radiation states can be exchanged between the two components of the atom.
      通信作者: 刘妮, 317446484@qq.com
    • 基金项目: 国家自然科学基金(批准号:11772177,61505100)、山西省科学基金(批准号:201701D221001)和山西省1331工程重点学科建设计划资助的课题.
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772177, 61505100), the Natural Science Foundation of Shanxi Province, China (Grant No. 201701D221001), and the Fund for Shanxi 1331Project Key Subjects, China.
    [1]

    Dicke R H 1954 Phys. Rev. 93 99

    [2]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272

    [3]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402

    [4]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553

    [5]

    Liang J Q, Liu J L, Li W D, Li Z J 2009 Phys. Rev. A 79 033617

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Cao H, Fu L B 2012 Eur. Phys. J. D 66 97

    [9]

    Zhang Y C, Zhou X F, Guo G C, Zhou X, Pu H, Zhou Z W 2014 Phys. Rev. A 89 053624

    [10]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937

    [11]

    Lian J L, Yu L, Liang J Q, Chen G, Jia S T 2013 Sci. Rep. 3 3166

    [12]

    Huang Y, Hu Z D 2015 Sci. Rep. 5 8006

    [13]

    Hamner C, Qu C, Zhang Y, Chang J, Gong M, Zhang C 2014 Nature Commun. 5 4023

    [14]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [15]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A 75 013804

    [16]

    Chen G, Wang X G, Liang J Q, Wang Z D 2008 Phys. Rev. A 78 023634

    [17]

    Nagy D, Knya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401

    [18]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [19]

    Timmermans E 1998 Phys. Rev. Lett. 81 5718

    [20]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1130

    [21]

    Dong Y, Ye J W, Pu H 2011 Phys. Rev. A 83 031608

    [22]

    Sasaki K, Suzuki N, Saito H 2011 Phys. Rev. A 83 053606

    [23]

    Sensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63

    [24]

    Gordon D, Savage C M 1999 Phys. Rev. A 59 4623

    [25]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [26]

    Bhattacherjee A B 2014 Phys. Lett. A 378 3244

    [27]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [28]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001

    [29]

    Bhaseen M J, Mayoh J, Simons B D 2012 Phys. Rev. A 85 013817

  • [1]

    Dicke R H 1954 Phys. Rev. 93 99

    [2]

    Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J 2007 Nature 450 272

    [3]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402

    [4]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553

    [5]

    Liang J Q, Liu J L, Li W D, Li Z J 2009 Phys. Rev. A 79 033617

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 物理学报 59 3695]

    [8]

    Cao H, Fu L B 2012 Eur. Phys. J. D 66 97

    [9]

    Zhang Y C, Zhou X F, Guo G C, Zhou X, Pu H, Zhou Z W 2014 Phys. Rev. A 89 053624

    [10]

    Zhang Y, Chen G, Zhang C 2013 Sci. Rep. 3 1937

    [11]

    Lian J L, Yu L, Liang J Q, Chen G, Jia S T 2013 Sci. Rep. 3 3166

    [12]

    Huang Y, Hu Z D 2015 Sci. Rep. 5 8006

    [13]

    Hamner C, Qu C, Zhang Y, Chang J, Gong M, Zhang C 2014 Nature Commun. 5 4023

    [14]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [15]

    Dimer F, Estienne B, Parkins A S, Carmichael H J 2007 Phys. Rev. A 75 013804

    [16]

    Chen G, Wang X G, Liang J Q, Wang Z D 2008 Phys. Rev. A 78 023634

    [17]

    Nagy D, Knya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401

    [18]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [19]

    Timmermans E 1998 Phys. Rev. Lett. 81 5718

    [20]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1130

    [21]

    Dong Y, Ye J W, Pu H 2011 Phys. Rev. A 83 031608

    [22]

    Sasaki K, Suzuki N, Saito H 2011 Phys. Rev. A 83 053606

    [23]

    Sensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63

    [24]

    Gordon D, Savage C M 1999 Phys. Rev. A 59 4623

    [25]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [26]

    Bhattacherjee A B 2014 Phys. Lett. A 378 3244

    [27]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [28]

    Keeling J, Bhaseen M J, Simons B D 2010 Phys. Rev. Lett. 105 043001

    [29]

    Bhaseen M J, Mayoh J, Simons B D 2012 Phys. Rev. A 85 013817

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [5] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [6] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [7] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [8] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [9] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵. 物理学报, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [10] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [11] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [12] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [14] 李生好, 伍小兵, 黄崇富, 王洪雷. 基于投影纠缠对态算法优化的研究. 物理学报, 2014, 63(14): 140501. doi: 10.7498/aps.63.140501
    [15] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究. 物理学报, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [16] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [17] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [18] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [19] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  6114
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 修回日期:  2018-06-07
  • 刊出日期:  2019-09-20

/

返回文章
返回