搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变

尤冰凌 刘雪莹 成书杰 王晨 高先龙

引用本文:
Citation:

Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变

尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙

The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model

You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long
PDF
HTML
导出引用
  • 采用平均场近似的方法, 分别研究了Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变: Mott绝缘体相-超流体相量子相变, 探索了光的聚束-反聚束行为, 研究了Kerr非线性作用对量子相变与光子统计特征的影响. 研究结果表明, 在Rabi晶格模型中二能级原子和光子相互作用强度g和格点之间光子跃迁强度J的增大会使晶格体系从Mott绝缘体相向超流体相转变, 同时, 光子统计行为由聚束转变为反聚束, 而Kerr非线性强度的增大抑制了Mott绝缘体相-超流体相相变, 但促进了光子聚束与反聚束之间的转变.
    We use the mean field approximation method to study the quantum phase transitions of the Jaynes-Cummings lattice model and the Rabi lattice model. The effective Hamiltonians are obtained for the JC and Rabi model including the Kerr nonlinear term. Numerically we diagonalized the Hamiltonian matrix and calculated the superfluidity order parameter and the two-photon correlation function by solving the iteration equations.We have explored the Mott insulating-superfluid quantum phase transition, the bunching-antibunching behavior of light, and the effect of Kerr nonlinear term on the quantum phase transition and photon statistical characteristics. Our results show that in the JC lattice model, by increasing J, a quantum phase transition takes place and the system is driven to a superfluid phase. The phase boundaries of the Mott lobes are N-dependent. However the photon will always be in a bunching statistical behavior irrelevant of the coupling strength between the two-level atom and the phonton and the nonlinear Kerr effect.In the Rabi lattice model, the anti-rotating wave term breaks Mott-lobe structure of the phase diagram and the increase of the two-level atom and photon interaction strength g and the photon transition strength J between the lattices drive the system from the Mott insulating phase to the superfluid phase. The photon statistical behavior changes from the bunching to the antibunching one when considering the anti-rotating wave term, which is important in the strongly coupled systems. Most interestingly, the increase of the Kerr nonlinear coefficient will inhibit the Mott insulating phase-superfluid phase transition, but favor the superfluid phase and the transition from the bunching to anti-bunching statistics.
      通信作者: 高先龙, gaoxl@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774316, 11704093)资助的课题
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774316, 11704093).
    [1]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849Google Scholar

    [2]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [3]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [4]

    Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401Google Scholar

    [5]

    Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401Google Scholar

    [6]

    Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803Google Scholar

    [7]

    Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601Google Scholar

    [8]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403Google Scholar

    [9]

    Koch J, Le Hur K 2009 Phys. Rev. A 80 023811Google Scholar

    [10]

    Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612Google Scholar

    [11]

    Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841Google Scholar

    [12]

    Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [13]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [14]

    Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [16]

    Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490Google Scholar

    [17]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [18]

    Schmidt S, Koch J 2013 Ann. Phys. 525 395Google Scholar

    [19]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [20]

    Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95

    [21]

    Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [22]

    van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601Google Scholar

    [23]

    van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606Google Scholar

    [24]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257Google Scholar

    [25]

    Krauth W, Trivedi N 1991 Europhys. Lett. 14 627Google Scholar

    [26]

    Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307Google Scholar

    [27]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [28]

    Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606Google Scholar

    [29]

    Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401Google Scholar

    [30]

    Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406Google Scholar

    [31]

    Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405Google Scholar

    [32]

    Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23

    [33]

    Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597Google Scholar

    [34]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [35]

    Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415Google Scholar

    [36]

    Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445Google Scholar

    [37]

    Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003Google Scholar

    [38]

    Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554Google Scholar

    [39]

    Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008Google Scholar

    [40]

    Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502Google Scholar

    [41]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936Google Scholar

    [42]

    Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611Google Scholar

    [43]

    Niu Y, Gong S 2006 Phys. Rev. A 73 053811Google Scholar

    [44]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [45]

    Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799

  • 图 1  (a), (b)平均场近似下, 不同晶格模型关于超流序参量$ A = \braket{a} $$ J \text {-} g $相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为格点之间的光子跃迁强度$ J $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示超流序参量$ A = \braket{a} $的大小. 深蓝色表示Mott绝缘相, 浅黄色表示超流体相. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, 光子截断数$ N = 20 $. (c), (d)对于不同的$ J $, 不同晶格模型的超流序参量$ A $$ g $变化的图像 (c) JC晶格模型; (d) Rabi晶格模型

    Fig. 1.  (a), (b) Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the superfluid order parameter $ A = \braket{a} $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of the superfluid order parameter $ A = \braket{a} $. Dark blue indicates Mott insulating phase, and light yellow indicates superfluid phase. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, and the number of the photon truncation $ N = 20 $. (c), (d) For different $ J $, the superfluid order parameter $ A $ of different lattice models varies with $ g $: (c) JC lattice model; (d) Rabi lattice model.

    图 2  平均场近似下, 不同晶格模型关于二阶关联函数$ g^{2}(0) $$J\text {-} g$相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为格点之间的光子跃迁强度$ J $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示二阶关联函数$ g^{2}(0) $ 的值. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, 光子截断数$ N = 20 $

    Fig. 2.  Under the mean field approximation, the $ J \text {-} g $ phase diagram of different lattice models with respect to the second-order correlation function $ g^{2}(0) $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the photon transition intensity $ J $ between the lattice, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, the color bar is represented by the value of the second-order correlation function $ g^{2}(0) $. $ \mathop{\omega_{0} = \omega_{1}} = 1 $, and the number of photon truncation $ N = 20 $.

    图 3  Kerr效应下不同晶格模型关于超流序参量$ A = \braket{a} $$ \kappa \text {-} g $相图 (a) JC晶格模型; (b) Rabi 晶格模型. 横坐标为Kerr非线性强度$ \kappa $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示超流序参量$ A $的大小. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, 光子截断数$ N = 20 $

    Fig. 3.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the superfluid order parameter $ A = \braket{a} $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of the superfluid order parameter $ A $. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, and the number of photon truncation $ N = 20 $.

    图 4  Kerr效应下不同晶格模型关于二阶关联函数$ g^{2}(0) $$ \kappa \text {-} g $相图 (a) JC晶格模型; (b) Rabi晶格模型. 横坐标为Kerr非线性强度$ \kappa $, 纵坐标为二能级原子和光子相互作用强度$ g $, 横纵坐标的单位为$ \omega_0 $, 颜色条表示二阶关联函数$ g^{2}(0) $. 其他参量取值为: $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, 光子截断数$ N = 20 $

    Fig. 4.  The $ \kappa \text {-} g $ phase diagram of different lattice models under the Kerr effect with respect to the second-order correlation function $ g^{2}(0) $: (a) JC lattice model; (b) Rabi lattice model. The abscissa is the Kerr nonlinear intensity $ \kappa $, the ordinate is the two-level atom and photon interaction strength $ g $, the unit of the abscissa and the ordinate is $ \omega_0 $, and the color bar represents the value of second-order correlation function $ g^{2}(0) $. Other parameters are taken as $ \mathop{\omega_{0} = \omega_{1}} = 1 $, $ J = 0.05 $, and the number of photon truncation $ N = 20 $.

  • [1]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849Google Scholar

    [2]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C 2006 Nat. Phys. 2 856Google Scholar

    [3]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [4]

    Rossini D, Fazio R 2007 Phys. Rev. Lett. 99 186401Google Scholar

    [5]

    Aichhorn M, Hohenadler M, Tahan C, Littlewood P B 2008 Phys. Rev. Lett. 100 216401Google Scholar

    [6]

    Na N, Utsunomiya S, Tian L, Yamamoto Y 2008 Phys. Rev. A 77 031803Google Scholar

    [7]

    Carusotto I, Gerace D, Türeci H E, De Liberato S, Ciuti C, and Imamoğlu A 2009 Phys. Rev. Lett. 103 033601Google Scholar

    [8]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403Google Scholar

    [9]

    Koch J, Le Hur K 2009 Phys. Rev. A 80 023811Google Scholar

    [10]

    Pippan P, Evertz H G, Hohenadler M 2009 Phys. Rev. A 80 033612Google Scholar

    [11]

    Ferretti S, Andreani L C, Türeci H E, Gerace D 2010 Phys. Rev. A 82 013841Google Scholar

    [12]

    Umucalilar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [13]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [14]

    Tian L, Carmichael H J 1992 Phys. Rev. A 46 R6801Google Scholar

    [15]

    Imamoḡlu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [16]

    Rebic S, Tan S M, Parkins A S, Walls D F 1999 J. Opt. B 1 490Google Scholar

    [17]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [18]

    Schmidt S, Koch J 2013 Ann. Phys. 525 395Google Scholar

    [19]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [20]

    Lundqvist S, Nilsson N B 1989 Physics of Low-dimensional Systems (Sweden: World Scientific) pp89−95

    [21]

    Fisher M P, Weichman P B, Grinstein G, Fisher D S 1989 Phys. Rev. B 40 546Google Scholar

    [22]

    van Oosten D, van Der Straten P, Stoof H T C 2001 Phys. Rev. A 63 053601Google Scholar

    [23]

    van Oosten D, van Der Straten P, Stoof H T C 2003 Phys. Rev. A 67 033606Google Scholar

    [24]

    Sheshadri K, Krishnamurthy H R, Pandit R, Ramakrishnan T V 1993 Europhys. Lett. 22 257Google Scholar

    [25]

    Krauth W, Trivedi N 1991 Europhys. Lett. 14 627Google Scholar

    [26]

    Krauth W, Trivedi N, Ceperley D 1991 Phys. Rev. Lett. 67 2307Google Scholar

    [27]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [28]

    Albus A, Illuminati F, Eisert J 2003 Phys. Rev. A 68 023606Google Scholar

    [29]

    Lewenstein M, Santos L, Baranov M A, Fehrmann H 2004 Phys. Rev. Lett. 92 050401Google Scholar

    [30]

    Illuminati F, Albus A 2004 Phys. Rev. Lett. 93 090406Google Scholar

    [31]

    Cramer M, Eisert J, Illuminati F 2004 Phys. Rev. Lett. 93 190405Google Scholar

    [32]

    Fehrmann H, Baranov M A, Damski B, Lewenstein M, Santos L 2004 Opt. Commun. 243 23

    [33]

    Littlewood P B, Eastham P R, Keeling J M J, Marchetti F M, Simons B D, Szymanska M H 2004 J. Phys. Condens. Matter 16 S3597Google Scholar

    [34]

    He Y, Zhu X, Mihalache D, Liu J, Chen Z 2012 Phys. Rev. A 85 013831Google Scholar

    [35]

    Eguchi K, Takagi Y, Nakagawa T, Yokoyama T 2012 Phys. Rev. B 85 174415Google Scholar

    [36]

    Vitali D, Fortunato M, Tombesi P 2000 Phys. Rev. Lett. 85 445Google Scholar

    [37]

    Angelakis D G, Dai L, Kwek L C 2010 Europhys. Lett. 91 10003Google Scholar

    [38]

    Patargias N, Bartzis V, Jannussis A 1995 Phys. Scr. 52 554Google Scholar

    [39]

    Bu S P, Zhang G F, Liu J, Chen Z Y 2008 Phys. Scr. 78 065008Google Scholar

    [40]

    Cordero S, Récamier J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 135502Google Scholar

    [41]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936Google Scholar

    [42]

    Harris S E, Hau L V 1999 Phys. Rev. Lett. 82 4611Google Scholar

    [43]

    Niu Y, Gong S 2006 Phys. Rev. A 73 053811Google Scholar

    [44]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [45]

    Gomes C B C, Almeida F A G, Souza A M C 2016 Phys. Lett. A 38 1799

  • [1] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [5] 周晓凡, 樊景涛, 陈刚, 贾锁堂. 光学腔中一维玻色-哈伯德模型的奇异超固相. 物理学报, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [6] 保安. 各向异性ruby晶格中费米子体系的Mott相变. 物理学报, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [7] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [8] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [9] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [10] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [11] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [12] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [13] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [14] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [15] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图. 物理学报, 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [16] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [17] 王晓波, 黄 涛, 邵军虎, 降雨强, 肖连团, 贾锁堂. 利用光子统计概率测量单分子光子源的信号背景比. 物理学报, 2005, 54(2): 617-621. doi: 10.7498/aps.54.617
    [18] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响. 物理学报, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [19] 顾樵. Jaynes-Cummings模型的量子统计性质. 物理学报, 1989, 38(5): 735-744. doi: 10.7498/aps.38.735
    [20] 李孝申. 量子统计的级联三能级Jaynes-Cummings模型. 物理学报, 1985, 34(6): 833-840. doi: 10.7498/aps.34.833
计量
  • 文章访问数:  6215
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 修回日期:  2021-01-04
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回