搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于晶格玻尔兹曼方法研究不同出口压力条件下淋巴管内氮含量的变化及影响

赫轶男 张乾毅 韦华建 施娟

引用本文:
Citation:

基于晶格玻尔兹曼方法研究不同出口压力条件下淋巴管内氮含量的变化及影响

赫轶男, 张乾毅, 韦华建, 施娟

Investigation of NO content varaitaion in the lymphatic vessels under different outlet pressures by a lattice Boltzmann method

He Yi-Nan, Zhang Qian-Yi, Wei Hua-Jian, Shi Juan
PDF
HTML
导出引用
  • 淋巴系统是人体内重要的防御功能系统, 具有三大免疫功能, 首先是能够抵御细菌病毒, 使人体免于疾病的攻击; 其次是由淋巴细胞加以辅助, 清除由新陈代谢而出的产物; 最后是由淋巴细胞来修补受损的器官与组织, 使其恢复正常的生理功能。淋巴系统没有像血液循环系统中心脏一样的动力泵, 淋巴液的驱动主要靠淋巴管的自主收缩来完成(肺淋巴系统是靠肺泡的运动)。淋巴管的自主收缩循环是由淋巴肌细胞内钙离子增加产生收缩, 收缩驱动流体产生剪切力, 剪切力使淋巴内皮细胞产生一氧化氮合酶(eNOS), 一氧化氮合酶使一氧化氮增加, 一氧化氮的增加降低钙离子使淋巴管松弛, 淋巴管松弛后流体剪切率下降, eNOS下降, 一氧化氮下降, 钙离子增加, 淋巴肌细胞收缩, 开始新的周期。可见一氧化氮的浓度及其分布对淋巴管的收缩起关键作用。显然出口压力会影响淋巴管内流体的剪切率, 进而影响一氧化氮的浓度和淋巴管的收缩。为了研究淋巴管出口压力对淋巴管收缩的影响, 建立了一个晶格玻尔兹曼模型, 模拟嵌入多孔组织的初始淋巴管和有两对瓣膜的集合淋巴管, 该模型可以重现一氧化氮、钙的相互影响以及淋巴管的自主收缩, 并研究不同出口压力下一氧化氮的分布及其平均值.
    The lymphatic system is an important defense function system in the human body. It is also critical to humoral homeostasis. Local dysfunction will cause edema, immune deficiency, and a high incidence. There are intraluminal valves in the lymphatic system, which allows the lymph fluid to flow to the large veins and heart. It has three major immune functions. First, it can resist bacterial viruses and protect the human body from disease attacks. Secondly, it is supplemented by lymphocytes to remove the products produced by metabolism. In the end, The damaged organs and tissues are repaired by lymphocytes to restore normal physiological functions. The lymphatic system does not have the same pump as the heart of the blood circulatory system. The driving of lymph is mainly done by the spontaneous contraction of the lymphatics (the lung lymphatic system is compressed by the alveoli). The autonomic contraction cycle of lymphatic vessels is caused by the increase of Ca2+ in lymphocytes, and the contraction drives the fluid to produce shearing force. The shearing force produces nitric oxide synthase (eNOS) in lymphatic endothelial cells, and eNOS increases NO and increases NO. Decreasing Ca2+ relaxes lymphatic vessels, fluid shear rate decreases after lymphatic vessel relaxation, eNOS decreases, NO decreases, Ca2+ increases, lymphocytes contract, and a new cycle begins. It can be seen that the concentration of NO and its distribution play a key role in the contraction of lymphatic vessels. Obviously, export pressure affects the shear rate of fluid in the lymphatics, which in turn affects the concentration of NO and the contraction of lymphatic vessels. To investigate the effect of lymphatic outlet pressure on lymphatic vessel contraction, we established a lattice Boltzmann model to simulate the initial lymphatic vessels embedded in porous tissue and the collecting lymphatic vessels with two pairs of valves. The valve is the main source of NO. Once contraction begins, the contraction is spontaneous, self-sustaining, and the system exhibits non-linear dynamics. This model can reproduce NO and The interaction of Ca2+ and the spontaneous contraction of lymphatic vessels, and the distribution of NO under different outlet pressures and their average values were studied.
      通信作者: 施娟, shijuan@guet.edu.cn
    • 基金项目: 国家级-用晶格玻尔兹曼方法研究癌细胞在血管中的动力学行为(11362005)
      Corresponding author: Shi Juan, shijuan@guet.edu.cn
    [1]

    Louveau A, Smirnov I, Keyes T J, Eccles J D, Rouhani S J, Peske J D, Derecki N C, Castle D, Mandell J W, Lee K S, Harris T H, Kipnis J 2015 Nature 523 377

    [2]

    Margaris K N, Black R A 2012 J. R. Soc. Interface 9 601Google Scholar

    [3]

    Macdonald A J, Arkill K P, Tabor G R, McHale N G, Winlove C P 2008 Am. J. Physiol. Heart C. 295 305Google Scholar

    [4]

    张立民 2012 ATP敏感性钾通道在一氧化氮调节失血性休克大鼠离体淋巴管泵功能中的作用 (张家口: 河北北方学院)

    Zhang L M 2012 Role of ATP-Sensitive Potassium Channels in Nitric Oxide in Regulating the Function of Isolated Lymphatic Pump in Hemorrhagic Shock(Zhangjiakou: Hebei North University) (in Chinese)

    [5]

    秦立鹏, 牛春雨, 赵自刚 2011 生理科学进展 42 237

    Qin L P, Niu C Y, Zhao Z G 2011 Advances in Physiological Sciences 42 237

    [6]

    Kunert C, Baish J W, Liao S, Padera T P, Munn L L 2015 PNAS 112 10938Google Scholar

    [7]

    Baish J W, Kunert C, Padera T P, Munn LL 2016 PLoS Comput. Biol. 12 1005

    [8]

    赵彤彤 2018 多孔介质含天然气水合物多相流动LBM模拟 (太原: 太原理工大学)

    Zhao T T 2018 LBM Simulation of Multiphase Flow of Natural Gas Hydrate in Porous Media (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [9]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [10]

    Li H B, Mei Y M, Maimon N, Padera T P, Baish J W, Munn L L 2019 SCIENTIFICREPORTS 9 2045

    [11]

    Chen, Chen, Martnez, Matthaeus 1991 Phys. Rev. Lett. 67 27

    [12]

    Qian Y H, D’HumièresD, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [13]

    Sukop M C, ThorneJr D T2010 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Berlin: Springer Publishing Company) p36

    [14]

    Pujol F, Hodgson T, Martinezcorral I, Prats A C, Devenport D, Takeichi M, Genot E, Mäkinen T, Francis-West P, Garmy-Susini B, Tatin F 2017 Arterioscl. Thromb. Vas. Biol. 37 1732Google Scholar

    [15]

    Scallan J P, Davis M J 2013 J. Physiol. 591 250

    [16]

    Kawai Y, Yokoyama Y, Kaidoh M 2010 Am. J. Physiol. 298 647Google Scholar

    [17]

    Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191Google Scholar

    [18]

    He X, Doolen G 1997 J. Comput. Phys. 134 306Google Scholar

    [19]

    H Glenn B, Olga Yu G, Zawieja D C 2011 Ame. J. Physiol. Heart C. 301 1897Google Scholar

  • 图 1  D2 Q9晶格玻尔兹曼模型的微观速度

    Fig. 1.  Microscopic velocity of D2 Q9 lattice Boltzmann model.

    图 2  反向弹回示意图

    Fig. 2.  Bounceback.

    图 3  淋巴管段示意图

    Fig. 3.  Lymphatic section.

    图 4  静止状态下淋巴管瓣膜

    Fig. 4.  The lymphatic valves at rest.

    图 5  t = 2.296 s时, NO浓度分布图

    Fig. 5.  t = 3.003 s, NO concentration distribution map.

    图 6  NO平均浓度与压强差关系图

    Fig. 6.  Relationship between NO average concentration and pressure difference.

    表 1  Ca2+与NO的化学参数

    Table 1.  Chemical parameters of Ca2+ and NO.

    参数单位数值
    NO${D_{{\rm{NO}}}}$cm2/s1.2 × 10–4
    $K_{{\rm{NO}}}^ - $s–13.7594
    $K_{{\rm{NO}}}^ + $无量纲400
    Ca2+${D_{{\rm{Ca}}}}$cm2/s6.5 × 10–6
    $K_{{\rm{Ca}}}^{-}$s–137.6
    $K_{{\rm{Ca}}}^{+}$s–11.2
    $K_\delta ^ + $s–115038
    ${C_{{\rm{th}}}}$无量纲0.015
    ${R_{{\rm{Ca}}}}$cm0.005
    ${K_{{\rm{Ca}}, {\rm{NO}}}}$无量纲5.3
    h无量纲0.03
    下载: 导出CSV

    表 2  淋巴管与瓣膜参数

    Table 2.  Parameters of Lymphatic and valve.

    参数单位数值
    淋巴管${k_{\rm{M}}}$${\rm{dynes}}$7.6 × 10–5
    ${k_{\rm{E}}}$${\rm{dynes}}/{{\rm{cm}}^{\rm{2}}}$4.52
    ${k_{\rm{B}}}$${\rm{dynes}} /{{\rm{cm}}^2}$9045
    ${k_{\rm{r}}}$dynes·s/cm4.8 × 10–9
    ${k_{{\rm{NO}}}}$无量纲1
    ${R_{\rm{l}}}$cm0.003
    ${R_{\rm{0}}}$cm0.005
    瓣膜$k_{\rm{B}}^\nu $dynes /cm20—0.2
    $k_{\rm{E}}^\nu $dynes /cm29.0 × 10–4
    $k_{\rm{r}}^\nu $dynes /cm20.0091
    Acm–11500
    $\varDelta $cm2 × 10–4
    下载: 导出CSV

    表 3  出口压强高于入口压强时正压力差

    Table 3.  Positive pressure when outlet pressure is higher than inlet pressure.

    正压力差
    ${{\rho _{{\rm{out}}}}} /$g·cm–31.00201.00151.00101.00081.00061.00041.0002
    ${\Delta \rho }/$g·cm–30.00200.00150.00100.00080.00060.00040.0002
    ${\Delta P} /$g·cm–1·s–260.345.22530.1524.1218.0912.066.03
    下载: 导出CSV

    表 4  出口压强低于入口压强时负压力差

    Table 4.  Negative pressure when outlet pressure is lower than inlet pressure.

    负压力差
    ${\rho _{{\rm{out}}}}/$g·cm–31.00000.999980.999960.99980.9996
    $\Delta \rho /$g·cm–30–0.00002–0.00004–0.0002–0.0004
    $\Delta P/$g·cm–1·s–20–0.603–1.206–6.03–12.06
    下载: 导出CSV
  • [1]

    Louveau A, Smirnov I, Keyes T J, Eccles J D, Rouhani S J, Peske J D, Derecki N C, Castle D, Mandell J W, Lee K S, Harris T H, Kipnis J 2015 Nature 523 377

    [2]

    Margaris K N, Black R A 2012 J. R. Soc. Interface 9 601Google Scholar

    [3]

    Macdonald A J, Arkill K P, Tabor G R, McHale N G, Winlove C P 2008 Am. J. Physiol. Heart C. 295 305Google Scholar

    [4]

    张立民 2012 ATP敏感性钾通道在一氧化氮调节失血性休克大鼠离体淋巴管泵功能中的作用 (张家口: 河北北方学院)

    Zhang L M 2012 Role of ATP-Sensitive Potassium Channels in Nitric Oxide in Regulating the Function of Isolated Lymphatic Pump in Hemorrhagic Shock(Zhangjiakou: Hebei North University) (in Chinese)

    [5]

    秦立鹏, 牛春雨, 赵自刚 2011 生理科学进展 42 237

    Qin L P, Niu C Y, Zhao Z G 2011 Advances in Physiological Sciences 42 237

    [6]

    Kunert C, Baish J W, Liao S, Padera T P, Munn L L 2015 PNAS 112 10938Google Scholar

    [7]

    Baish J W, Kunert C, Padera T P, Munn LL 2016 PLoS Comput. Biol. 12 1005

    [8]

    赵彤彤 2018 多孔介质含天然气水合物多相流动LBM模拟 (太原: 太原理工大学)

    Zhao T T 2018 LBM Simulation of Multiphase Flow of Natural Gas Hydrate in Porous Media (Taiyuan: Taiyuan University of Technology) (in Chinese)

    [9]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [10]

    Li H B, Mei Y M, Maimon N, Padera T P, Baish J W, Munn L L 2019 SCIENTIFICREPORTS 9 2045

    [11]

    Chen, Chen, Martnez, Matthaeus 1991 Phys. Rev. Lett. 67 27

    [12]

    Qian Y H, D’HumièresD, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [13]

    Sukop M C, ThorneJr D T2010 Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Berlin: Springer Publishing Company) p36

    [14]

    Pujol F, Hodgson T, Martinezcorral I, Prats A C, Devenport D, Takeichi M, Genot E, Mäkinen T, Francis-West P, Garmy-Susini B, Tatin F 2017 Arterioscl. Thromb. Vas. Biol. 37 1732Google Scholar

    [15]

    Scallan J P, Davis M J 2013 J. Physiol. 591 250

    [16]

    Kawai Y, Yokoyama Y, Kaidoh M 2010 Am. J. Physiol. 298 647Google Scholar

    [17]

    Ladd A J C, Verberg R 2001 J. Stat. Phys. 104 1191Google Scholar

    [18]

    He X, Doolen G 1997 J. Comput. Phys. 134 306Google Scholar

    [19]

    H Glenn B, Olga Yu G, Zawieja D C 2011 Ame. J. Physiol. Heart C. 301 1897Google Scholar

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [3] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [4] 蒋燕华, 陈佳民, 施娟, 周锦阳, 李华兵. 三角波脉动流通栓的晶格玻尔兹曼方法模型. 物理学报, 2016, 65(7): 074701. doi: 10.7498/aps.65.074701
    [5] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [6] 马永朋, 赵小利, 刘亚伟, 徐龙泉, 康旭, 倪冬冬, 闫帅, 朱林繁, 杨科. NO与C2H2的康普顿轮廓研究. 物理学报, 2015, 64(15): 153302. doi: 10.7498/aps.64.153302
    [7] 陈佳民, 蒋燕华, 施娟, 周锦阳, 李华兵. 脉动流在分叉管中通栓效果的晶格玻尔兹曼方法研究. 物理学报, 2015, 64(14): 144701. doi: 10.7498/aps.64.144701
    [8] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [9] 周锦阳, 施娟, 陈佳民, 李华兵. 脉动流血液通栓的晶格玻尔兹曼模型. 物理学报, 2014, 63(19): 194701. doi: 10.7498/aps.63.194701
    [10] 施娟, 王立龙, 周锦阳, 薛泽, 李华兵, 王健, 谭惠丽. 用晶格玻尔兹曼方法研究血液在分岔管中的栓塞. 物理学报, 2014, 63(1): 014702. doi: 10.7498/aps.63.014702
    [11] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [12] 刘诚, 白文广, 张鹏, 孙友文, 司福祺. 基于卫星平台的全球大气一氧化碳柱浓度反演方法及结果分析. 物理学报, 2013, 62(3): 030704. doi: 10.7498/aps.62.030704
    [13] 薛泽, 施娟, 王立龙, 周锦阳, 谭惠丽, 李华兵. 粒子在锥形管中运动的晶格玻尔兹曼方法研究. 物理学报, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [14] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [15] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [16] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [17] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [19] 汪 洋, 孟 亮. TiO2表面氧空位对NO分子吸附的作用. 物理学报, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [20] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
计量
  • 文章访问数:  6218
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-22
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回