搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cd0.96Zn0.04Te光致载流子动力学特性的太赫兹光谱研究

李高芳 廖宇奥 崔昊杨 黄晨光 王晨 马国宏 周炜 黄志明 褚君浩

引用本文:
Citation:

Cd0.96Zn0.04Te光致载流子动力学特性的太赫兹光谱研究

李高芳, 廖宇奥, 崔昊杨, 黄晨光, 王晨, 马国宏, 周炜, 黄志明, 褚君浩

Photocarrier dynamics in Cd0.96Zn0.04Te measured by optical-pump terahertz-probe spectroscopy

Li Gao-Fang, Liao Yu-Ao, Cui Hao-Yang, Huang Chen-Guang, Wang Chen, Ma Guo-Hong, Zhou Wei, Huang Zhi-Ming, Chu Jun-Hao
PDF
HTML
导出引用
  • 采用光抽运-太赫兹探测技术研究Cd0.96Zn0.04Te的载流子弛豫和瞬态电导率特性. 在中心波长800 nm的飞秒抽运光激发下, Cd0.96Zn0.04Te的载流子弛豫过程用单指数函数进行了拟合, 其载流子弛豫时间长达几个纳秒, 且在一定光激发载流子浓度范围内随光激发载流子浓度的增大而减小, 这与电子-空穴对的辐射复合有关. 在低光激发载流子浓度 (4.51×1016—1.81×1017 cm–3)下, Cd0.96Zn0.04Te的太赫兹(terahertz, THz)瞬态透射变化率不随光激发载流子浓度增大而变化, 主要是由于陷阱填充效应造成的载流子损失与光激发新增的载流子数量近似. 随着光激发载流子浓度继续增大(1.81×1017—1.44×1018 cm–3), THz瞬态透射变化率随光激发载流子浓度的增大而线性增大, 是由于缺陷逐渐被填满, 陷阱填充效应造成的载流子损失与光激发新增的载流子数量相比可忽略不计. 在光激发载流子浓度为1.44×1018—2.17×1018 cm–3时, Cd0.96Zn0.04Te对800 nm抽运光的吸收达到饱和, THz瞬态透射变化率不再随光激发载流子浓度增大而变化. 不同光激发载流子浓度下Cd0.96Zn0.04Te在THz波段的瞬态电导率用Drude-Smith模型进行了很好的拟合. 此研究为碲锌镉探测器的设计和制备提供重要数据支撑和理论依据.
    Photogenerated carrier relaxation process and terahertz conductivity of Cd0.96Zn0.04Te are investigated by optical pump-terahertz probe spectroscopy at room temperature. With photoexcitation at 800 nm, the photogenerated carrier recovery process can be fitted with a single exponential curve, and its recovery time lasts several nanoseconds, which decreases with the increase of photogenerated carrier densities in a certain range of photogenerated carrier densities, relating to the radiative recombination of electron-hole pairs. The transient transmittance change of terahertz pulse remains the same with the photogenerated carrier densities increasing from 4.51×1016 cm–3 to 1.81×1017 cm–3, which is because the number of loss carriers by defect trapping is approximate to the augment of carriers by photoexcitation. As the photogenerated carrier density increases from 1.81×1017 cm–3 to 1.44×1018 cm–3, the magnitude of photoinduced absorption increases linearly with the increase of photogenerated carrier density due to the fact that most of the defects are occupied. When the photogenerated carrier densities are higher than 1.44×1018 cm–3, the magnitude of photoinduced absorption remains almost the same, because the absorption of 800 nm pump pulse reaches a saturation level. The evolution of complex conductivity with photogenerated carrier density in a delay time of about 50 ps can be well fitted with Drude-Smith model. Our analysis provides an important data support and theoretical basis for designing and fabricating of Cd1–xZnxTe detection.
      通信作者: 马国宏, phymagh@t.shu.edu.cn ; 黄志明, zmhuang@mail.sitp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62205194, 52177185)和上海市自然科学基金(批准号: 17ZR1411500, 20ZR1466300)资助的课题.
      Corresponding author: Ma Guo-Hong, phymagh@t.shu.edu.cn ; Huang Zhi-Ming, zmhuang@mail.sitp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205194, 52177185) and the Shanghai Natural Science Foundation of China (Grant Nos. 17ZR1411500, 20ZR1466300).
    [1]

    Koch-Mehrin K A L, Bugby S L, Lees J E, Veale M C, Wilson M D 2021 Sensors-Basel 21 3260Google Scholar

    [2]

    Szeles C 2004 Phys. Status Solidi B 241 783Google Scholar

    [3]

    Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk P M, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L, James R B 2011 IEEE Trans. Nucl. Sci. 58 1972Google Scholar

    [4]

    Guo R R, Jie W Q, Xu Y D, Yu H, Zha G Q, Wang T, Ren J 2015 Nucl. Instrum. Meth. A 794 62Google Scholar

    [5]

    Liang S J, Sun S W, Zhou C H, Xu C, Min J H, Liang X Y, Zhang J J, Jin C W, Shi H Z, Wang L J, Shen Y 2020 Mat. Sci. Semicond Process 108 104871Google Scholar

    [6]

    赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌 2022 红外技术 44 560

    Zhao W, Kong J C, Jiang J, Zhao Z L, Chen S P, Song L W, Yu J Y, Chen S, Tuo M H, Li J, He Z, Ji R B 2022 Infrar. Technol. 44 560

    [7]

    Wu R, Kang Y, Wei D K, Fan D H, Li Y R, Wu S, Dong J P, Chen D L, Tan T T, Zha G Q 2022 IEEE Trans. Nucl. Sci. 69 1773Google Scholar

    [8]

    Wang Q, Xie L J, Ying Y B 2021 Appl. Spectrosc. Rev. 57 249

    [9]

    Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar

    [10]

    Xia C Q, Monti M, Boland J L, Herz L M, Lloyd-Hughes J, Filip M R, Johnston M B 2021 Phys. Rev. B 103 245205Google Scholar

    [11]

    Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L Bao X C, Gao H, Ren W, Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2022 Light Sci. Appl. 11 209Google Scholar

    [12]

    Li G F, Nie X B, Zhou W, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma G H 2021 Appl. Opt. 59 11046Google Scholar

    [13]

    Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar

    [14]

    Magnanelli T J, Heilweil E J 2020 Chem. Phys. 540 111005

    [15]

    Yuan L, Pokharel R, Devkota S, Kuchoor H, Dawkins K, Lee M C, Huang Y, Yarotski D, Iyer S, Prasankumar R P 2022 Nanotechnology 33 425702Google Scholar

    [16]

    Mithun K P, Kar S, Kumar A, Muthu D V S, Ravishankar N, Sood A K 2021 Nanoscale 13 8283Google Scholar

    [17]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [18]

    Xing X, Zhao L T, Zhang W J, Wang Z, Chen H Y, Su H M, Ma G H, Dai J F, Zhang W J 2020 Nanoscale 12 2498Google Scholar

    [19]

    Ma Q, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296

    [20]

    Zou Y Q, Ma Q S, Zhang Z Y, Pu R H, Zhang W J, Suo P, Sun K W, Chen J M, Li D, Ma H, Lin X, Leng Y X, Liu W M, Du J, Ma G H 2022 J. Phys. Chem. Lett. 13 5123

    [21]

    Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764Google Scholar

    [22]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [23]

    黄根生, 张小平, 常勇, 于福聚, 杨建荣, 何力 1999 红外与毫米波学报 6 460

    Huang G S, Zhang X P, Chang Y, Yu F J, Yang J R, He L 1999 J. Infrared Millim. W. 6 460

    [24]

    Lmai F, Moubah R, Amiri A E, Boudali A, Hlil E K, Lassri H 2018 J. Phys. Chem. Solids 100 45

    [25]

    Sabbah A J, Riffe D M 2002 Phys. Rev. B 66 165217Google Scholar

    [26]

    Li Y J, Gu Z, Li G Q, Jie W Q 2004 J. Electron. Mater. 33 861Google Scholar

    [27]

    Maeshima H, Matsumoto K, Hirahara Y, Nakagawa T, Koga R, Hanamura Y, Wada T, Nagase K, Oyabu S, Suzuki T, Kokusho T, Kaneda H, Ishikawa D 2022 J. Electron. Mater. 51 564Google Scholar

    [28]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (San Dicgo: Academic Press) pp416–417

    [29]

    Cohen R, Lyahovitskaya V, Poles E, Liu A, Rosenwaks Y 1998 Appl. Phys. Lett. 73 1400Google Scholar

    [30]

    Carvalho A, Tagantsev A, Oberg S, Briddon P R, Setter N 2009 Physica B 404 5019Google Scholar

    [31]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mersropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [32]

    Li G Q, Zhang X L, Jie W Q, Hua H 2006 J. Crys. Growth 31 295

    [33]

    Cheng Z, Delahoy A, Su Z, Chin K K 2014 Thin Solid Films 558 391Google Scholar

    [34]

    Suzuki K, Sawada T, Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958Google Scholar

    [35]

    Lang D V, Henry C H 1975 Phys. Rev. Lett. 35 1525Google Scholar

    [36]

    Cola A, Reggiani L, Vasanelli L 1997 J. Appl. Phys. 81 997Google Scholar

    [37]

    Soundararajan R, Lynn K, Awadallah S, Szeles C, Wei S H 2006 J. Electron. Mater. 35 1333Google Scholar

    [38]

    Shi Y, Zhou Q, Zhang C, Jin B 2008 Appl. Phys. Lett. 93 121115Google Scholar

    [39]

    Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar

    [40]

    Schall M, Helm H, Keiding S R 1999 Int. J. Infraren Milli 20 595Google Scholar

    [41]

    Dzhagan V, Lokteva I, Himcinschi C, Jin X, Joanna K, Zahn D 2011 Nanoscale Res. Lett. 6 1

    [42]

    Hawkins S A, Villa-Aleman E, Duff M C, Hunter D B, Burger A, Groza M, Buliga V, Black D R 2008 J. Electron. Mater. 37 1438Google Scholar

    [43]

    曾东梅, 王涛, 周海, 杨英歌 2010 人工晶体学报 39 221Google Scholar

    Zeng D M, Wang T, Zhou H, Yang Y G 2010 J. Synth. Cryst. 39 221Google Scholar

    [44]

    Xie X, Xu J Z, Zhang X C 2005 Opt. Lett. 31 978

    [45]

    Smith N 2001 Phys. Rev. B 64 155106Google Scholar

    [46]

    Jensen S A, Versluis J, Cánovas E, Pijpers H, Sellers I R, Bonn M, 2012 Appl. Phys. Lett. 101 222113Google Scholar

  • 图 1  光抽运-太赫兹探测光路示意图

    Fig. 1.  Experimental arrangement for optical-pump THz -probe measurements.

    图 2  (a) Cd0.96Zn0.04Te的晶体结构示意图; (b) Cd0.96Zn0.04Te (红)和CdTe (蓝)室温下的紫外-可见透射光谱

    Fig. 2.  (a) Crystal structure for Cd0.96Zn0.04Te; (b) the UV-visible transmittance spectra of Cd0.96Zn0.04Te (red) and CdTe (blue) at room temperature.

    图 3  不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b)的THz瞬态透射变化率与延迟时间的关系图, 实线是单指数函数拟合结果; (c) Cd0.96Zn0.04Te和CdTe的THz瞬态透射变化率最大值(–ΔT/T0 max)与光激发载流子浓度的关系图; (d) Cd0.96Zn0.04Te和CdTe的载流子复合时间与光激发载流子浓度的关系图; (e) Cd0.96Zn0.04Te的能带结构示意图

    Fig. 3.  Transient transmittance change (–∆T/T0) of THz probe pulse as a function of probe delay with carrier density from 4.51×1016 cm–3 increases to 2.17×1018 cm–3 for Cd0.96Zn0.04Te (a) and with carrier density from 1.12×1017 increases to 7.82×1017 for CdTe (b), solid curves are monoexponential fits; (c) maximum value of the transient transmittance change (–ΔT/T0 max) of THz probe pulse as a function of carrier densities for Cd0.96Zn0.04Te and CdTe; (d) the relationship between relaxation time and carrier density, in which the points with error bars show experimental data and the lines are guide to the eye; (e) the band structure of Cd0.96Zn0.04Te.

    图 4  不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b) 的THz时域谱; 傅里叶变换后不同光激发载流子浓度下的Cd0.96Zn0.04Te (c) 和CdTe (d) 的频谱图; (e) 无抽运光激发时Cd0.96Zn0.04Te和CdTe的折射率图

    Fig. 4.  THz time domain spectroscopy of Cd0.96Zn0.04Te (a) and CdTe (b) with different carrier densities; THz spectrum of Cd0.96Zn0.04Te (c) and CdTe (d) with different carrier densities; (e) refractive index of nonphotoexcited Cd0.96Zn0.04Te and CdTe in THz frequency with no pump.

    图 5  不同光激发载流子浓度下Cd0.96Zn0.04Te (a) 和CdTe (b) 的瞬态电导率, 实线为Drude-Smith模型的拟合结果; 延迟时间为50 ps时Cd0.96Zn0.04Te (c) 和CdTe (d) 的载流子浓度随光激发载流子浓度的变化关系; (e) Cd0.96Zn0.04Te (红) 和CdTe (蓝)的Smith参数c1随光激发载流子浓度的变化关系图; (f) Cd0.96Zn0.04Te (红) 和CdTe (蓝)的载流子散射时间τS随光激发载流子浓度的变化关系图

    Fig. 5.  The THz photoconductivities of Cd0.96Zn0.04Te (a) and CdTe (b) at different photogenerated carrier density, solid lines show the fitting results of the Drude-Smith model; the relationship between carrier concentration and photoexcited carrier concentration at 50 ps delay time of Cd0.96Zn0.04Te (c) and CdTe (d); (e) the relationship of Smith parameter c1 with photogenerated carrier concentration of Cd0.96Zn0.04Te (red) and CdTe (bule); (f) the carrier scattering time τS varies with the photogenerated carrier concentration of Cd0.96Zn0.04Te (red) and CdTe (bule).

  • [1]

    Koch-Mehrin K A L, Bugby S L, Lees J E, Veale M C, Wilson M D 2021 Sensors-Basel 21 3260Google Scholar

    [2]

    Szeles C 2004 Phys. Status Solidi B 241 783Google Scholar

    [3]

    Bolotnikov A E, Babalola S, Camarda G S, Cui Y, Gul R, Egarievwe S U, Fochuk P M, Fochuk P M, Fuerstnau M, Horace J, Hossain A, Jones F, Kim K H, Kopach O V, McCall B, Marchini L, Raghothamachar B, Taggart R, Yang G, Xu L, James R B 2011 IEEE Trans. Nucl. Sci. 58 1972Google Scholar

    [4]

    Guo R R, Jie W Q, Xu Y D, Yu H, Zha G Q, Wang T, Ren J 2015 Nucl. Instrum. Meth. A 794 62Google Scholar

    [5]

    Liang S J, Sun S W, Zhou C H, Xu C, Min J H, Liang X Y, Zhang J J, Jin C W, Shi H Z, Wang L J, Shen Y 2020 Mat. Sci. Semicond Process 108 104871Google Scholar

    [6]

    赵文, 孔金丞, 姜军, 赵增林, 陈少璠, 宋林伟, 俞见云, 陈珊, 庹梦寒, 李俊, 贺政, 姬荣斌 2022 红外技术 44 560

    Zhao W, Kong J C, Jiang J, Zhao Z L, Chen S P, Song L W, Yu J Y, Chen S, Tuo M H, Li J, He Z, Ji R B 2022 Infrar. Technol. 44 560

    [7]

    Wu R, Kang Y, Wei D K, Fan D H, Li Y R, Wu S, Dong J P, Chen D L, Tan T T, Zha G Q 2022 IEEE Trans. Nucl. Sci. 69 1773Google Scholar

    [8]

    Wang Q, Xie L J, Ying Y B 2021 Appl. Spectrosc. Rev. 57 249

    [9]

    Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar

    [10]

    Xia C Q, Monti M, Boland J L, Herz L M, Lloyd-Hughes J, Filip M R, Johnston M B 2021 Phys. Rev. B 103 245205Google Scholar

    [11]

    Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L Bao X C, Gao H, Ren W, Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2022 Light Sci. Appl. 11 209Google Scholar

    [12]

    Li G F, Nie X B, Zhou W, Zhang W J, Cui H Y, Xia N H, Huang Z M, Chu J H, Ma G H 2021 Appl. Opt. 59 11046Google Scholar

    [13]

    Ruan S Y, Lin X, Chen H Y, Song B J, Dai Y, Yan X N, Jin Z M, Ma G H, Yao J Q 2021 Appl. Phys. Lett. 118 011102Google Scholar

    [14]

    Magnanelli T J, Heilweil E J 2020 Chem. Phys. 540 111005

    [15]

    Yuan L, Pokharel R, Devkota S, Kuchoor H, Dawkins K, Lee M C, Huang Y, Yarotski D, Iyer S, Prasankumar R P 2022 Nanotechnology 33 425702Google Scholar

    [16]

    Mithun K P, Kar S, Kumar A, Muthu D V S, Ravishankar N, Sood A K 2021 Nanoscale 13 8283Google Scholar

    [17]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [18]

    Xing X, Zhao L T, Zhang W J, Wang Z, Chen H Y, Su H M, Ma G H, Dai J F, Zhang W J 2020 Nanoscale 12 2498Google Scholar

    [19]

    Ma Q, Zhang W, Wang C, Pu R, Ju C W, Lin X, Zhang Z, Liu W, Li R 2021 J. Phys. Chem. C 125 9296

    [20]

    Zou Y Q, Ma Q S, Zhang Z Y, Pu R H, Zhang W J, Suo P, Sun K W, Chen J M, Li D, Ma H, Lin X, Leng Y X, Liu W M, Du J, Ma G H 2022 J. Phys. Chem. Lett. 13 5123

    [21]

    Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764Google Scholar

    [22]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [23]

    黄根生, 张小平, 常勇, 于福聚, 杨建荣, 何力 1999 红外与毫米波学报 6 460

    Huang G S, Zhang X P, Chang Y, Yu F J, Yang J R, He L 1999 J. Infrared Millim. W. 6 460

    [24]

    Lmai F, Moubah R, Amiri A E, Boudali A, Hlil E K, Lassri H 2018 J. Phys. Chem. Solids 100 45

    [25]

    Sabbah A J, Riffe D M 2002 Phys. Rev. B 66 165217Google Scholar

    [26]

    Li Y J, Gu Z, Li G Q, Jie W Q 2004 J. Electron. Mater. 33 861Google Scholar

    [27]

    Maeshima H, Matsumoto K, Hirahara Y, Nakagawa T, Koga R, Hanamura Y, Wada T, Nagase K, Oyabu S, Suzuki T, Kokusho T, Kaneda H, Ishikawa D 2022 J. Electron. Mater. 51 564Google Scholar

    [28]

    Palik E D 1985 Handbook of Optical Constants of Solids (Vol. 1) (San Dicgo: Academic Press) pp416–417

    [29]

    Cohen R, Lyahovitskaya V, Poles E, Liu A, Rosenwaks Y 1998 Appl. Phys. Lett. 73 1400Google Scholar

    [30]

    Carvalho A, Tagantsev A, Oberg S, Briddon P R, Setter N 2009 Physica B 404 5019Google Scholar

    [31]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mersropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [32]

    Li G Q, Zhang X L, Jie W Q, Hua H 2006 J. Crys. Growth 31 295

    [33]

    Cheng Z, Delahoy A, Su Z, Chin K K 2014 Thin Solid Films 558 391Google Scholar

    [34]

    Suzuki K, Sawada T, Imai K 2011 IEEE Trans. Nucl. Sci. 58 1958Google Scholar

    [35]

    Lang D V, Henry C H 1975 Phys. Rev. Lett. 35 1525Google Scholar

    [36]

    Cola A, Reggiani L, Vasanelli L 1997 J. Appl. Phys. 81 997Google Scholar

    [37]

    Soundararajan R, Lynn K, Awadallah S, Szeles C, Wei S H 2006 J. Electron. Mater. 35 1333Google Scholar

    [38]

    Shi Y, Zhou Q, Zhang C, Jin B 2008 Appl. Phys. Lett. 93 121115Google Scholar

    [39]

    Walther M, Cooke D G, Sherstan C, Hajar M, Freeman M R, Hegmann F A 2007 Phys. Rev. B 76 125408Google Scholar

    [40]

    Schall M, Helm H, Keiding S R 1999 Int. J. Infraren Milli 20 595Google Scholar

    [41]

    Dzhagan V, Lokteva I, Himcinschi C, Jin X, Joanna K, Zahn D 2011 Nanoscale Res. Lett. 6 1

    [42]

    Hawkins S A, Villa-Aleman E, Duff M C, Hunter D B, Burger A, Groza M, Buliga V, Black D R 2008 J. Electron. Mater. 37 1438Google Scholar

    [43]

    曾东梅, 王涛, 周海, 杨英歌 2010 人工晶体学报 39 221Google Scholar

    Zeng D M, Wang T, Zhou H, Yang Y G 2010 J. Synth. Cryst. 39 221Google Scholar

    [44]

    Xie X, Xu J Z, Zhang X C 2005 Opt. Lett. 31 978

    [45]

    Smith N 2001 Phys. Rev. B 64 155106Google Scholar

    [46]

    Jensen S A, Versluis J, Cánovas E, Pijpers H, Sellers I R, Bonn M, 2012 Appl. Phys. Lett. 101 222113Google Scholar

  • [1] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [2] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [3] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [4] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [5] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [6] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [7] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [8] 南瑞华, 王朋飞, 坚增运, 李晓娟. CdZnTe像素探测器的电输运性能. 物理学报, 2017, 66(20): 206101. doi: 10.7498/aps.66.206101
    [9] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [10] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [11] 贾琳, 唐大伟, 张兴. 多晶碲化锌薄膜载能子超快动力学实验研究. 物理学报, 2015, 64(8): 087802. doi: 10.7498/aps.64.087802
    [12] 江天, 程湘爱, 许中杰, 陆启生. 光伏型碲镉汞探测器在波段内连续激光辐照下的两种不同过饱和现象的产生机理. 物理学报, 2013, 62(9): 097303. doi: 10.7498/aps.62.097303
    [13] 江天, 程湘爱, 郑鑫, 许中杰, 江厚满, 陆启生. 光伏碲镉汞探测器在波段内连续激光辐照下的非线性响应机理研究. 物理学报, 2012, 61(13): 137302. doi: 10.7498/aps.61.137302
    [14] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究. 物理学报, 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [15] 张姗, 胡晓宁. Si基碲镉汞光伏探测器的深能级研究. 物理学报, 2011, 60(6): 068502. doi: 10.7498/aps.60.068502
    [16] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性. 物理学报, 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [17] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [18] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论. 物理学报, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [19] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [20] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
计量
  • 文章访问数:  4496
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-11-04
  • 上网日期:  2022-11-28
  • 刊出日期:  2023-02-05

/

返回文章
返回