-
Sb2Se3是一种低成本、环境友好、具有良好应用前景的光伏材料. 目前Sb2Se3太阳能电池的光电转换效率已经提高到了10%. 载流子复合动力学是决定Sb2Se3太阳能电池光电转换效率的关键因素. 本文利用飞秒时间分辨表面瞬态反射谱详细分析了Sb2Se3表面、Sb2Se3/CdS界面载流子复合动力学过程. 根据相对反射率变化
${{\Delta }{R}}/{{R}}$ 的演化, 得到Sb2Se3载流子热化、带隙收缩时间约为0.2—0.5 ps, 估计热载流子冷却时间为3—4 ps. 还实验证实在Sb2Se3/CdS界面处存在自由电子转移和浅束缚电子转移两种电子转移过程. 本文提供了Sb2Se3表面瞬态反射谱分析方法, 所得实验结果拓展了对Sb2Se3表面及Sb2Se3/CdS界面载流子过程的理解.Antimony selenide (Sb2Se3) is a promising low-cost and environmentally-friendly semiconductor photovoltaic material. The power conversion efficiency of Sb2Se3 solar cells has been improved to$ \sim $ 10% in the past few years. The carrier recombination transfer dynamics is significant factor that affects the efficiency of Sb2Se3 solar cells. In this work, carrier recombination on the Sb2Se3 surface and carrier transfer dynamics at the CdS/Sb2Se3 heterojunction interface are systematically investigated by surface transient reflectance. According to the evolution of relative reflectance change${{\Delta }{R}}/{{R}}$ , the carrier thermalization and band gap renormalization time of Sb2Se3 are determined to be in a range from 0.2 to 0.5 ps, and carrier cooling time is estimated to be about 3-4 ps. Our results also demonstrate that both free electron and shallow-trapped electron transfer occur at the Sb2Se3/CdS interface after photo excitation. Our results present a method of explaining the transient reflectance of Sb2Se3 and enhancing the understanding of carrier kinetics at Sb2Se3 surface and Sb2Se3/CdS interface.-
Keywords:
- Sb2Se3 /
- surface transient reflectance /
- carrier recombination /
- electron transfer
[1] Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905
[2] Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar
[3] Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623
[4] Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar
[5] Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar
[6] Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar
[7] Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar
[8] Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar
[9] Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar
[10] Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar
[11] Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar
[12] Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar
[13] Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar
[14] Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar
[15] Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar
[16] Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar
[17] Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar
[18] Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar
[19] Wolff P A 1962 Phys. Rev. 126 405Google Scholar
[20] 滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar
Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar
[21] Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar
[22] Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar
[23] Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar
[24] Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar
[25] Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar
[26] Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar
[27] Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar
[28] Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar
[29] Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar
[30] Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar
[31] Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97
[32] Nozik A J 2008 Nat. Energy 3 170Google Scholar
[33] Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar
[34] Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar
-
图 1 (a)两种厚度Sb2Se3薄膜在760和860 nm处
$ {{\Delta }{R}}/{{R}} $ 归一化曲线比较; (b) Sb2Se3/空气界面$ \dfrac{\partial{R}}{{\partial n}} $ 和$ \dfrac{\partial{R}}{{\partial k}} $ 曲线; (c) Sb2Se3/空气界面$ {{\Delta }{R}}/{{R}} $ 随温度的变化, 其中R为300 K时的界面反射率,$ {\Delta }{R} $ 为相对300 K条件下界面反射率的变化Fig. 1. (a) Comparisons of
$ {{\Delta }{R}}/{{R}} $ curves at probe wavelengths of 760 and 860 nm from Sb2Se3 film of two thicknesses, where the$ {{\Delta }{R}}/{{R}} $ curves have been normalized; (b)$ \dfrac{\partial{R}}{{\partial n}} $ and$ \dfrac{\partial{R}}{{\partial k}} $ curves of Sb2Se3/air interface; (c) dependence of$ {{\Delta }{R}}/{{R}} $ at Sb2Se3/air interface on temperature, where R is the reflectivity of the interface at 300 K, and$ {\Delta }{R} $ is the reflectivity difference with respect to R of the interface at 300 K.图 3 (a) Sb2Se3与Sb2Se3/CdS薄膜的吸收光谱; (b) Sb2Se3与Sb2Se3/CdS薄膜的XRD图谱; (c) Sb2Se3薄膜的表面形貌; (d) Sb2Se3薄膜的截面形貌
Fig. 3. (a) Absorbance spectra of Sb2Se3 and Sb2Se3/CdS film; (b) XRD diffraction spectra of Sb2Se3 and Sb2Se3/CdS film; (c) surface morphologies of Sb2Se3 film; (d) cross-sectional morphology of Sb2Se3 film.
图 4 (a) Sb2Se3薄膜的相对反射率变化
$ {{\Delta }{R}}/{{R}} $ 的二维图像(激发波长550 nm, 载流子浓度1.55 × 1020cm–3); (b)典型时间延迟对应的$ {{\Delta }{R}}/{{R}} $ 谱; (c)典型探测波长对应的$ {{\Delta }{R}}/{{R}} $ 动力学曲线Fig. 4. (a) Two-dimensional image of relative reflectivity change
$ {{\Delta }{R}}/{{R}} $ of Sb2Se3 film excited by 550 nm laser (300 nJ); (b)$ {{\Delta }{R}}/{{R}} $ with various probe wavelengths at three typical time delays; (c) evolutions of$ {{\Delta }{R}}/{{R}} $ of four typical probe wavelengths图 5 (a)不同激发光子能量条件下860 nm探测波长处
$ {{\Delta }{R}}/{{R}} $ 动力学曲线比较; (b)不同激发光子能量条件下载流子热化和带隙收缩时间; (c)不同载流子浓度条件下860 nm探测波长处$ {{\Delta }{R}}/{{R}} $ 动力学曲线比较(激发波长550 nm); (d)不同载流子浓度条件下载流子热化和带隙收缩时间Fig. 5. (a) Comparisons of kinetic curves of
$ {{\Delta }{R}}/{{R}} $ at probe wavelength 860 nm with different excitation photon energies; (b) carrier thermalization and band gap renormalization times with different excitation photon energies; (c) comparisons of kinetic curves of$ {{\Delta }{R}}/{{R}} $ with different carrier concentrations (excitation wavelength of 550 nm); (d) carrier thermalization and band gap renormalization time with different carrier concentrations.图 6 (a)不同激发光子能量条件下探测波长760 nm处
${{\Delta }{R}}/{{R}}$ 的动力学过程II比较; (b)不同激发光子能量条件下${{\Delta }{R}}/{{R}}$ 的动力学过程II的衰减寿命Fig. 6. (a) Comparisons of kinetics II of
${{\Delta }{R}}/{{R}}$ at 760 nm with different excitation photon energies; (b) decay lifetime of kinetics II of${{\Delta }{R}}/{{R}}$ with different excitation energies.图 7 (a)典型时间延迟条件下Sb2Se3/CdS的相对反射率变化
$ {{\Delta }{R}}/{{R}} $ 谱(激发波长650 nm); (b) Sb2Se3和Sb2Se3/CdS在495 nm处${{\Delta }{R}}/{{R}}$ 动力学曲线对比Fig. 7. (a) Relative reflectance change
$ {{\Delta }{R}}/{{R}} $ spectra of Sb2Se3/CdS at three time delays (excitation wavelength of 650 nm); (b) comparison of kinetic curves of$ {{\Delta }{R}}/{{R}} $ at 495 nm for Sb2Se3 and Sb2Se3/CdS.图 8 4种载流子浓度条件下Sb2Se3与Sb2Se3/CdS在760 nm处的
$ {{\Delta }{R}}/{{R}} $ 的动力学曲线对比 (a)$ 4.79\times {10}^{19} $ cm–3; (b) 9.59 × 1019 cm–3; (c) 1.44 × 1020 cm–3; (d) 1.92 × 1020 cm–3Fig. 8. Comparisons of kinetics of
$ {{\Delta }{R}}/{{R}} $ at 760 nm for Sb2Se3 and Sb2Se3/CdS under four different carrier concentrations of (a)$ 4.79\times {10}^{19} $ cm–3, (b) 9.59 × 1019 cm–3, (c) 1.44 × 1020 cm–3, (d) 1.92 × 1020 cm–3 -
[1] Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905
[2] Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar
[3] Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623
[4] Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar
[5] Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar
[6] Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar
[7] Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar
[8] Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar
[9] Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar
[10] Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar
[11] Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar
[12] Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar
[13] Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar
[14] Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar
[15] Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar
[16] Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar
[17] Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar
[18] Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar
[19] Wolff P A 1962 Phys. Rev. 126 405Google Scholar
[20] 滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar
Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar
[21] Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar
[22] Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar
[23] Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar
[24] Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar
[25] Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar
[26] Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar
[27] Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar
[28] Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar
[29] Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar
[30] Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar
[31] Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97
[32] Nozik A J 2008 Nat. Energy 3 170Google Scholar
[33] Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar
[34] Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar
计量
- 文章访问数: 6491
- PDF下载量: 247
- 被引次数: 0