搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋极化有机电致发光器件中单线态与三线态激子的形成及调控

乔士柱 赵俊卿 贾振锋 张宁玉 王凤翔 付刚 季燕菊

引用本文:
Citation:

自旋极化有机电致发光器件中单线态与三线态激子的形成及调控

乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊

Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices

Qiao Shi-Zhu, Zhao Jun-Qing, Jia Zhen-Feng, Zhang Ning-Yu, Wang Feng-Xiang, Fu Gang, Ji Yan-Ju
PDF
导出引用
  • 由于有机半导体(OSC)材料自旋弛豫时间长、自旋扩散长度大,OSC自旋器件逐渐成为研究热点.对于有机电致发光器件(OLED),通过自旋极化电极调控单线态和三线态激子比率是提高其效率的有效方法.本文从漂移扩散方程和载流子浓度连续性方程出发,结合朗之万定律建立了一个自旋注入、输运、复合的理论模型.计算了OSC中的极化电子、空穴浓度,得出了单线态和三线态激子的比率.分析了电场强度、自旋相关界面电导、电极和OSC电导率匹配和电极极化率等因素的影响.计算结果表明:两电极注入反向极化的载流子并提高载流子自旋极化率,有
    Organic semiconductor (OSC) devices based on manipulation of electron spin have attracted considerable attention since the discovery of long spin relaxation time and large transport distance in OSCs. For organic light-emitting devices (OLEDs), controlling the singlet to triplet ratio by spin-polarized electrodes is one of the effective ways to realize high luminescent efficiency. Based on the drift-diffusion equation, continuous equation and Langevin recombination theory, the spin injection, transportation and recombination properties of carriers in OLEDs are modeled in this paper. The density of polarized electrons and holes in OSCs are calculated, the singlet to triplet ratio is analyzed, and the influences of the electrical field, spin-related interfacial conductance, bulk conductivity and polarization of electrodes are accounted for. It is showed that opposite spin polarization of electrons and holes are in favor of increasing singlet to triplet ratio, and the higher spin polarization of injected carrier density is, the larger singlet to triplet ratio will be. Large spin-related interfacial resistance, large polarization of electrodes, matched bulk conductivity and high electrical field under forward bias favor spin polarization of carries density in OSCs. We can obtain obviously improved density polarization by optimizing the related parameters on the basis of essential injection efficiency. The optimized polarization ensures sufficient space for manipulating singlet to triplet ratio, hence the quantum efficiency of OLEDs.
    • 基金项目: 国家自然科学基金(批准号:60676041),山东省自然科学基金(批准号:Y2006A18)和山东建筑大学校内基金重点项目(批准号:XZ050102)资助的课题.
    [1]

    [1]Zhao J Q, Qiao S Z, Xu F Y, Zhang N Y, Pang Y T, Chen Y 2008 J. Semi. 29 418

    [2]

    [2]Zhang L J, Hua Y L, Wu X M, Wang Y, Yin S G 2008 Chin. Phys. B 17 3097

    [3]

    [3]Kadashchuk A, Vakhnin A, Blonski I, Beljonne D, Shuai Z, Brédas J L, Arkhipov V I, Heremans P, Emelianova E V, Bssler H 2004 Phys. Rev. Lett. 93 066803

    [4]

    [4]Yin S W, Chen L P, Xuan P F, Chen K Q, Shuai Z 2004 J. Phys. Chem. B 108 9608

    [5]

    [5]Ding H J, Gao Y L, Cinchetti M, Wüstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311

    [6]

    [6]Wu Y, Hu B, Jane H, Li A P, Shen J 2007 Phys. Rev. B 75 075413

    [7]

    [7]Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [8]

    [8]Ren J F, Zhang Y B, Xie S J 2007 Acta. Phys. Sin. 56 4785 (in Chinese) [任俊峰、张玉滨、解士杰 2007 物理学报 56 4785]

    [9]

    [9]Tsymbal E Y, Burlakov V M, Oleinik I I 2002 Phys. Rev. B 66 073201

    [10]

    ]Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [11]

    ]Schmidt G, Ferrand D, Molenkamp L W, Filip A T, Van Wees B J 2000 Phys. Rev. B 62 R4790

    [12]

    ]Rashba E I 2000 Phys. Rev. B 62 R16267

    [13]

    ]Fert A, Jaffres H 2001 Phys. Rev. B 64 184420

    [14]

    ]Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [15]

    ]Kikkawa J M, Awschalom D D 1999 Nature 397 139

    [16]

    ]Malajovich I, Berry J J, Samarth N, Awschalom D D 2001 Nature 411 770

    [17]

    ]D’Amico I 2004 Phys. Rev. B 69 165305

    [18]

    ]Zhao J Q, Qiao S Z, Jia Z F, Zhang N Y, Ji Y J, Pang Y T, Chen Y, Fu G 2008 Chin. Phys. Lett. 25 4381

    [19]

    ]Yu Z G, Flatte M E 2002 Phys. Rev. B 66 235302

    [20]

    ]Ma Y N, Ren J F, Zhang Y B, Liu D S, Xie S J 2007 Chin. Phys. Lett. 24 1697

    [21]

    ]Yu Z G, Flatte M E 2002 Phys. Rev. B 66 201202

    [22]

    ]Zhao J Q, Qiao S Z, Zhang N Y, Xu F Y, Pang Y T, Chen Y 2009 Cur. Appl. Phys. 9 919

    [23]

    ]Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [24]

    ]Hershfield S, Zhao H L 1997 Phys. Rev. B 56 3296

    [25]

    ]Zhao J Q, Xie S J, Han S H 2003 Journal of Shan Dong University of Architecture and Engineering 18 10 (in Chinese) [赵俊卿、解士杰、韩圣浩 2003 山东建筑大学学报 18 10]

    [26]

    ]Albrecht J D, Smith D L 2002 Phys. Rev. B 66 113303

  • [1]

    [1]Zhao J Q, Qiao S Z, Xu F Y, Zhang N Y, Pang Y T, Chen Y 2008 J. Semi. 29 418

    [2]

    [2]Zhang L J, Hua Y L, Wu X M, Wang Y, Yin S G 2008 Chin. Phys. B 17 3097

    [3]

    [3]Kadashchuk A, Vakhnin A, Blonski I, Beljonne D, Shuai Z, Brédas J L, Arkhipov V I, Heremans P, Emelianova E V, Bssler H 2004 Phys. Rev. Lett. 93 066803

    [4]

    [4]Yin S W, Chen L P, Xuan P F, Chen K Q, Shuai Z 2004 J. Phys. Chem. B 108 9608

    [5]

    [5]Ding H J, Gao Y L, Cinchetti M, Wüstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311

    [6]

    [6]Wu Y, Hu B, Jane H, Li A P, Shen J 2007 Phys. Rev. B 75 075413

    [7]

    [7]Xiong Z H, Wu D, Vardeny Z V, Shi J 2004 Nature 427 821

    [8]

    [8]Ren J F, Zhang Y B, Xie S J 2007 Acta. Phys. Sin. 56 4785 (in Chinese) [任俊峰、张玉滨、解士杰 2007 物理学报 56 4785]

    [9]

    [9]Tsymbal E Y, Burlakov V M, Oleinik I I 2002 Phys. Rev. B 66 073201

    [10]

    ]Smith D L, Silver R N 2001 Phys. Rev. B 64 045323

    [11]

    ]Schmidt G, Ferrand D, Molenkamp L W, Filip A T, Van Wees B J 2000 Phys. Rev. B 62 R4790

    [12]

    ]Rashba E I 2000 Phys. Rev. B 62 R16267

    [13]

    ]Fert A, Jaffres H 2001 Phys. Rev. B 64 184420

    [14]

    ]Ren J F, Fu J Y, Liu D S, Mei L M, Xie S J 2005 J. Appl. Phys. 98 074503

    [15]

    ]Kikkawa J M, Awschalom D D 1999 Nature 397 139

    [16]

    ]Malajovich I, Berry J J, Samarth N, Awschalom D D 2001 Nature 411 770

    [17]

    ]D’Amico I 2004 Phys. Rev. B 69 165305

    [18]

    ]Zhao J Q, Qiao S Z, Jia Z F, Zhang N Y, Ji Y J, Pang Y T, Chen Y, Fu G 2008 Chin. Phys. Lett. 25 4381

    [19]

    ]Yu Z G, Flatte M E 2002 Phys. Rev. B 66 235302

    [20]

    ]Ma Y N, Ren J F, Zhang Y B, Liu D S, Xie S J 2007 Chin. Phys. Lett. 24 1697

    [21]

    ]Yu Z G, Flatte M E 2002 Phys. Rev. B 66 201202

    [22]

    ]Zhao J Q, Qiao S Z, Zhang N Y, Xu F Y, Pang Y T, Chen Y 2009 Cur. Appl. Phys. 9 919

    [23]

    ]Zutic I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [24]

    ]Hershfield S, Zhao H L 1997 Phys. Rev. B 56 3296

    [25]

    ]Zhao J Q, Xie S J, Han S H 2003 Journal of Shan Dong University of Architecture and Engineering 18 10 (in Chinese) [赵俊卿、解士杰、韩圣浩 2003 山东建筑大学学报 18 10]

    [26]

    ]Albrecht J D, Smith D L 2002 Phys. Rev. B 66 113303

  • [1] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [2] 徐冲, 牛连斌, 钱雅翠, 文林, 熊元强, 彭浩南, 关云霞. Fe(NH2trz)3·(BF4)2掺杂聚芴的有机电致发光器件. 物理学报, 2021, 70(7): 077202. doi: 10.7498/aps.70.20201444
    [3] 肖心明, 朱龙山, 关宇, 华杰, 王洪梅, 董贺, 汪津. 低效率滚降、发光颜色稳定的磷光白色有机电致发光器件. 物理学报, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [4] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [5] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [6] 陶洪, 高栋雨, 刘佰全, 王磊, 邹建华, 徐苗, 彭俊彪. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升. 物理学报, 2017, 66(1): 017302. doi: 10.7498/aps.66.017302
    [7] 陈海涛, 徐征, 赵谡玲, 赵玲, 刘志民, 高松, 杨一帆, 刘志方, 申崇渝, 徐叙瑢. PCDTBT作为发光层的有机电致发光器件研究. 物理学报, 2014, 63(16): 167802. doi: 10.7498/aps.63.167802
    [8] 张新稳, 胡琦. 有机电致发光器件的稳定性. 物理学报, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [9] 陈苏杰, 于军胜, 文雯, 蒋亚东. NPB:CBP复合空穴传输层对黄色有机电致发光器件的影响. 物理学报, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [10] 陈平, 赵理, 段羽, 程刚, 赵毅, 刘式墉. 一种用于堆叠结构有机发光二极管的新的电荷生成层. 物理学报, 2011, 60(9): 097203. doi: 10.7498/aps.60.097203
    [11] 文雯, 王博, 李璐, 于军胜, 蒋亚东. 基于红色荧光染料3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl) cyclohexene的高性能白色有机电致发光器件. 物理学报, 2009, 58(11): 8014-8020. doi: 10.7498/aps.58.8014
    [12] 牛连斌, 关云霞. 富勒烯掺杂NPB空穴传输层的有机电致发光器件. 物理学报, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [13] 吴晓明, 华玉林, 印寿根, 张国辉, 惠娟利, 张丽娟, 王 宇. 不同主体双发光层白色有机电致发光器件的性能研究. 物理学报, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [14] 唐晓庆, 于军胜, 李 璐, 王 军, 蒋亚东. 铱金属配合物磷光材料掺杂聚合物体系的电致发光特性. 物理学报, 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [15] 张国辉, 华玉林, 吴空物, 吴晓明, 印寿根, 惠娟利, 安海萍, 朱飞剑, 牛 霞. 利用BCP层调节白色磷光有机电致发光器件色度的研究. 物理学报, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [16] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [17] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性. 物理学报, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [18] 朱文清, 吴有智, 郑新友, 蒋雪茵, 张志林, 孙润光, 许少鸿. 双层有机电致发光器件中多成分激发态发射. 物理学报, 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [19] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [20] 杨盛谊, 徐征, 刘姗姗, 董金凤, 章婷, 徐叙瑢, 张莉, 杨展澜, 吴谨光. 窄谱带绿色有机电致发光器件. 物理学报, 2001, 50(5): 973-976. doi: 10.7498/aps.50.973
计量
  • 文章访问数:  2608
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-04
  • 修回日期:  2009-09-12
  • 刊出日期:  2010-05-15

自旋极化有机电致发光器件中单线态与三线态激子的形成及调控

  • 1. 山东建筑大学理学院,济南 250101
    基金项目: 国家自然科学基金(批准号:60676041),山东省自然科学基金(批准号:Y2006A18)和山东建筑大学校内基金重点项目(批准号:XZ050102)资助的课题.

摘要: 由于有机半导体(OSC)材料自旋弛豫时间长、自旋扩散长度大,OSC自旋器件逐渐成为研究热点.对于有机电致发光器件(OLED),通过自旋极化电极调控单线态和三线态激子比率是提高其效率的有效方法.本文从漂移扩散方程和载流子浓度连续性方程出发,结合朗之万定律建立了一个自旋注入、输运、复合的理论模型.计算了OSC中的极化电子、空穴浓度,得出了单线态和三线态激子的比率.分析了电场强度、自旋相关界面电导、电极和OSC电导率匹配和电极极化率等因素的影响.计算结果表明:两电极注入反向极化的载流子并提高载流子自旋极化率,有

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回