-
通过超薄层插入与掺杂相结合的方式,分别以激光染料DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran)、铱配合物Ir (ppy)3(tris (2-phenylpyridine) iridium)和联苯乙烯衍生物BCzVB(1,4-bis[2-(3-N-ethylcarbazoryl) vinyl]benzene)为红色、绿色和蓝色发射体,制备了磷光敏化荧光白色有机电致发光器件。通过改变DCM超薄层在CBP:Ir (ppy)3掺杂层中的插入位置实现了白色发光,最高外量子效率为2.5%(电流效率为5.1 cd/A),最高亮度为12400 cd/m2,且其中一种器件在1 mA/cm2的电流密度下,国际照明委员会(Commission Internationale de L'Eclairage,CIE)坐标达到了理想白光平衡点(0.33,0.33)。白光的获得归因于Ir (ppy)3适合的掺杂比例和DCM适合的插入位置,较好地均衡了红、绿、蓝三基色发光比例。结果表明,通过磷光敏化荧光实现三线态激子将部分能量传递给单线态激子,可望实现高效率白色有机电致发光器件,从而降低能耗并为促进OLED的应用提供更多空间。Although phosphorescent organic light-emitting diodes can have 100% internal quantum efficiency (IQE), the IQE usually roll-off at high current densities due to triplet-triplet annihilation. Phosphor-sensitized fluorescence can realize the energy transfer between phosphorescent and fluorescent emitters, and can used to suppress the efficiency roll-off and tune the color of the device. Based on this consideration, white emission including different colors of phosphorescent and fluorescent emitters can be expected. Herein, Phosphor-sensitized fluorescent White organic light-emitting devices (WOLED) are fabricated by combining ultra-thin layer insertion and doping, in which laser dyes DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethyl-aminostyryl)-4H-pyran), iridium complexes Ir(ppy)3 (tris(2-phenylpyridine)iridium), and biphenyl ethylene derivatives BCzVB (1,4-bis[2- (3-N-ethylcarbazoryl)vinyl]benzene) were used as red, green and blue emitters, respectively. By tuning the doping concentration of Ir(ppy)3 phosphorescent green emitter in CBP (4,4’-N,N’-dicarbazole-biphyenyl) host with ultra-thin layers of BCzVB fluorescent blue emitter at both sides of CBP:Ir(ppy)3 doping system, and with ultra-thin layer of DCM fluorescent red emitter inserting in CBP:Ir(ppy)3 layer, the three colors can be balanced, white emissions are obtained in the device, the highest external quantum efficiency is 2.5% (current efficiency of 5.1 cd/A), the maximum brightness is 12400 cd/m2, and Commission Internationale de l'Eclairage (CIE) co-ordinates can reach the ideal white light equilibrium point (0.33, 0.33) at a current density of 1 mA/cm2. The acquisition of white light is attributed to the suitable doping ratio of Ir(ppy)3 and the position of DCM, which effectively balance the emission ratios of red, green, and blue three primary colors. The results indicate that the partially energy transferring of triplet to singlet excitons by phosphor-sensitized fluorescence scheme, can be used to realize white organic electroluminescent devices with high efficiency, thereby reducing energy consumption and providing more space for promoting OLED applications.
-
Keywords:
- Organic light-emitting diode /
- phosphor-sensitized fluorescence /
- non-doped /
- DCM
-
[1] Kido J, Hongawa K, Okuyama K 1994Appl. Phys. Lett. 64 815
[2] Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201(in Chinese)[吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪2022物理学报71227201]
[3] Hwang J, Choi H K, Moon J, Kim T Y, Shin J W, Joo C W, Han J H, Cho D H, Huh J W, Choi S Y, Lee J I, Chu H Y 2012Appl. Phys. Lett. 100 133304
[4] Cho J T, Kim D H, Koh E I, Kim T W 2014Thin. Solid. Films. 570 63
[5] Chen Y W, Yang D Z, Qiao X F, Dai Y F, Sun Q, Ma D G 2020J. Mater. Chem. C 8 6577
[6] Rosenow T C, Furno M, Reineke S, Olthof S, Lüssem B, Leo K 2010J. Appl. Phys. 108 113113
[7] Wang Q, Ding J Q, Ma D G, Cheng Y X, Wang L X, Jing X B, Wang F S 2009Adv. Funct. Mater. 19 84
[8] Sun Y, Forrest S R 2007Appl. Phys. Lett. 91 263503
[9] Reineke S, Schwartz G, Walzer K, Falke M, Leo K 2009Appl. Phys. Lett. 94 163305
[10] Gao Z X, Wang F F, Guo K P, Wang H, Wei B, Xu B S 2014Opt. Laser Technol. 56 20
[11] Murawski C, Leo K, Gather M C 2013Adv. Mater. 25 6801
[12] Reineke S, Schwartz G, Walzer K, Leo K 2007Appl. Phys. Lett. 91 123508
[13] Baldo M A, Thompson M E, Forrest S R 2000Nature 403 750
[14] Heimel P, Mondal A, May F, Kowalsky W, Lennartz C, Andrienko D, Lovrincic R 2018Nat. Commun. 9 4990
[15] D’Andrade B W, Baldo M A, Adachi C, Brooks J, Thompson M E, Forrest S R 2001Appl. Phys. Lett. 79 1045
[16] Chen X, Huang Y, Luo D, Chang C, Lu C, Su H 2023 Chem. Eur. J. 29 e202300034
[17] Baek S, Park J Y, Woo S, Lee W, Kim W, Cheon H, Kim Y, Lee J 2024 Small Struct. 5 2300564
[18] Cheong K, Han S W, Lee J Y 2024 Small Methods 8 2301710
[19] Liang N, Zhao Y K, Wu Y Z, Zhang C R, Shao M 2021Appl. Phys. Lett. 119 053301
[20] Zhou Y, Gao H, Wang J, Yeung F S Y, Lin S H, Li X B, Liao S L, Luo D X, Kwok H S, Liu B Q 2023Electronics 12 3164
[21] Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012Adv. Mater. 24 5408
[22] Vipin C K, Shukla A, Rajeev K, Hasan M, Lo S C, Namdas E B, Ajayaghosh A, Unni K N N 2021J. Phys. Chem. C 125 22809
[23] Yang S H, Huang S F, Chang C H, Chung C H 2011J. Lumin. 131 2106
[24] Ko C W, Tao Y T, Lin J T, Justin Thomas K R 2002Chem. Mater. 14 357
[25] Petrova P K, Ivanov P I, Tomova R L 2014J. Phys.: Conf. Ser. 558 012028
[26] Miao Y Q, Du X G, Wang H, Liu H H, Jia H S, Xu B S, Hao Y Y, Liu X G, Li W L, Huang W 2014RSC Adv. 5 4261
[27] Zou W J, Wu Y Z, Zhang C R 2024J. Lanzhou Univ. Tech. 5021 Zou W J, Wu Y Z, Zhang C R 2024 J. Lanzhou Univ. Tech. 50 21(in Chinese) [邹文静,吴有智,张材荣2024兰州理工大学学报504667]
[28] Gulbinas V, Zaushitsyn Y, Sundström V, Hertel D, Bässler H, Yartsev A 2002Phys. Rev. Lett. 89 107401
[29] Liu Z G, Chen Z J, Gong H Q 2005Chinese Phys. Lett. 22 1536
计量
- 文章访问数: 87
- PDF下载量: 2
- 被引次数: 0