搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MPCVD法制备高浓度金刚石NV色心及其性能研究

刘厚盛 郭世峰 陈明 张国凯 郭崇 高学栋 蔚翠

引用本文:
Citation:

MPCVD法制备高浓度金刚石NV色心及其性能研究

刘厚盛, 郭世峰, 陈明, 张国凯, 郭崇, 高学栋, 蔚翠

Study on fabrication and properties of high concentration diamond NV color center by MPCVD method

Liu Hou-Sheng, Guo Shi-Feng, Chen Ming, Zhang Guo-Kai, Guo Chong, Gao Xue-Dong, Yu Cui
PDF
导出引用
  • 金刚石氮-空位(NV)色心在室温下稳定性好,电子自旋相干时间长,能被激光和微波操控,是量子探测领域最具潜力的结构。本研究采用微波等离子化学气相沉积法(MPCVD)制备具有较高氮含量的金刚石单晶,以构建高浓度NV色心。通过在前驱体气体中掺杂不同含量的氮原子,解决了高氮条件下长时间生长金刚石单晶出现的诸多问题,制备氮含量约为0.205ppm、5ppm、8ppm、11ppm、15ppm、36ppm和54ppm的高氮金刚石单晶。初步确定了前驱体气体中氮含量与进入到金刚石单晶晶格中氮含量的关系平均约为11,氮原子在金刚石单晶中主要以聚集态氮和单个替位N+形式存在。对高氮金刚石单晶进行电子辐照,显著提升了金刚石NV色心浓度,并对辐照后NV色心材料的磁探测性能进行验证。
    Diamond nitrogen vacancy (NV) color centers have good stability at room temperature, long electron spin coherence time, and can be manipulated by lasers and microwaves, making them the most promising structure in the field of quantum detection. Within a certain range, the higher the concentration of NV color centers, the higher the sensitivity of detecting physical quantities. Therefore, it is necessary to dope sufficient nitrogen atoms into diamond single crystals to form high concentration of NV color centers. In this study, diamond single crystals with different nitrogen content were prepared by microwave plasma chemical vapor deposition (MPCVD) to construct high concentrations of NV color centers. By doping different amounts of nitrogen atoms into the precursor gas, many problems encountered during long-time growth of diamond single crystals under high nitrogen conditions were solved. Diamond single crystals with nitrogen contents of approximately 0.205 ppm, 5 ppm, 8 ppm, 11 ppm, 15 ppm, 36 ppm, and 54 ppm were prepared. As the nitrogen content increased, the width of the step flow on the surface of the diamond single crystal gradually widened, eventually the step flow gradually disappeared and the surface became smooth. Under the experimental conditions of this study, it was preliminarily determined that the average ratio of the nitrogen content in the precursor gas to the nitrogen atoms content introduced into the diamond single crystal lattice was about 11. Fourier transform infrared spectroscopy shows that as the nitrogen content inside the CVD diamond single crystal increases, the density of vacancy defects also increases. Therefore, the color of CVD high nitrogen diamond single crystals ranges from light brown to brownish black. Compared with HPHT diamond single crystals, the intensity of absorption peak at 1130cm-1 is weaker, absorption peak at 1280cm-1 was not shown. Three obvious nitrogen related absorption peaks at 1371cm-1, 1353cm-1, and 1332cm-1 of CVD diamond single crystal were displayed. Nitrogen atoms mainly exist in the form of aggregated nitrogen and single substitutional N+ in diamond single crystals, rather than in the form of C-defect. The PL spectra results showed that defects such as vacancies inside the diamond single crystal with nitrogen content of 54 ppm were significantly increased after electron irradiation, leading to a remarkable increase in the concentration of NV color centers. The magnetic detection performance of the NV color center material after irradiation was verified, the fluorescence intensity was uniformly distributed in the sample surface. The diamond single crystal with nitrogen content of 54 ppm had good microwave spin manipulation, its longitudinal relaxation time was about 3.37 ms.
  • [1]

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017Acta Phys. Sin. 23 90(in Chinese) [李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清, 2017物理学报23 90]

    [2]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013Phys Rep 528 1

    [3]

    Acosta V, Hemmer P 2013MRS Bull. 38 127

    [4]

    Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020Diamond & Abrasives Engineering 40 42(in Chinese) [吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星2020金刚石与磨料磨具工程40 42]

    [5]

    Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023Laser& Optoelectronics Progress 60 11(in Chinese) [刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳2023激光与光电子学进展60 11]

    [6]

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018Acta Phys. Sin. 67 43(in Chinese) [王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰2018物理学报67 43]

    [7]

    Wang Z, Kong F, Zhao P, Huang Z, Yu P, Wang Y, Shi F, Du J 2022Sci Adv 8 8158

    [8]

    Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023Diam. Relat. Mater 139 110348

    [9]

    Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021Acta Phys.Sin. 70 330(in Chinese) [李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊2021物理学报70 330]

    [10]

    Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023Diam. Relat. Mater. 140 110472

    [11]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015Acta Phys. Sin. 64 412(in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015物理学报64 412]

    [12]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984(in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安2015人工晶体学报44 2984]

    [13]

    Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016Acta Phys. Sin. 65 257(in Chinese) [李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安2016物理学报65 257]

    [14]

    Kanda H, Akaishi M, Yamaoka S 1999Diam. Relat. Mater. 8 1441

    [15]

    Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020Diam. Relat. Mater 105 107794

    [16]

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000Acta Phys. Sin. 49 1756(in Chinese) [李灿华廖源, 常超,王冠中,方容川2000物理学报49 1756]

    [17]

    Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999J. Inor. mater. 14 114(in Chinese) [刘志杰张卫, 张剑云,万永中,王季陶1999无机材料学报14 114]

    [18]

    Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021J. Synthetic Cryst.50 0158(in Chinese) [李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪2021人工晶体学报 50 0158]

    [19]

    Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023phys. status solidi (a) 220 2200299

    [20]

    Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009Acta Phys. Sin. 58 8039(in Chinese) [梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊2009物理学报58 8039]

    [21]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014Acta Phys. Sin. 63 326(in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安2014物理学报63 326]

    [22]

    Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol Sin. 42 895(in Chinese) [吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢2021地球学报42 895]

    [23]

    Howell C, O’Neill C.J, Grant K J, Griffin W L, O’Reilly S Y. Pearson N J, Stern R A, Stachel T 2012Contrib. Mineral Petr. 164 1011

    [24]

    Lawson S C, Fisher D, Hunt D C, Newton M E 1998J. Phys. Condens. Matter 10 6171

    [25]

    Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021Diam. Relat. Mater 118 108511

    [26]

    Jones R, 2009Diam. Relat. Mater 18 820

    [27]

    Li R B 2007Acta Phys. Sin. 56 395(in Chinese) [李荣斌2007物理学报56 395]

    [28]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019Carbon 143 714

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, doi: 10.7498/aps.72.20221725
    [2] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究. 物理学报, doi: 10.7498/aps.71.20220011
    [3] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究. 物理学报, doi: 10.7498/aps.71.20220123
    [4] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量. 物理学报, doi: 10.7498/aps.71.20221725
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, doi: 10.7498/aps.68.20190903
    [6] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, doi: 10.7498/aps.68.20191510
    [7] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, doi: 10.7498/aps.67.20181401
    [8] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, doi: 10.7498/aps.67.20180243
    [9] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, doi: 10.7498/aps.67.20172170
    [10] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真. 物理学报, doi: 10.7498/aps.66.114203
    [11] 刘江平, 黎军, 刘元琼, 雷海乐, 韦建军. 低温下氘分子红外吸收特性研究. 物理学报, doi: 10.7498/aps.63.023301
    [12] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, doi: 10.7498/aps.63.228501
    [13] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, doi: 10.7498/aps.63.048101
    [14] 李鑫, 羊梦诗, 叶志鹏, 陈亮, 徐灿, 储修祥. 甘氨酸色氨酸寡肽链的红外光谱的密度泛函研究. 物理学报, doi: 10.7498/aps.62.156103
    [15] 潘越, 赵强, 江舸, 周杨, 江美福, 杨亦赏. SiC过渡层对氟化类金刚石薄膜附着特性的影响. 物理学报, doi: 10.7498/aps.62.015209
    [16] 刘晓东, 陶万军, 郑旭光, 萩原雅人, 孟冬冬, 张森林, 郭其新. 磁几何阻挫材料羟基氯化钴的中红外光谱特征. 物理学报, doi: 10.7498/aps.60.037803
    [17] 毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐. 液氢平面低温冷冻靶的红外吸收谱. 物理学报, doi: 10.7498/aps.59.7531
    [18] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, doi: 10.7498/aps.54.4944
    [19] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究. 物理学报, doi: 10.7498/aps.53.3099
    [20] 凌志华. 垂直排列液晶盒中反铁电液晶TFMHxPOCBC-D2偏振红外光谱研究. 物理学报, doi: 10.7498/aps.50.227
计量
  • 文章访问数:  82
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-10

/

返回文章
返回