搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdZnTe像素探测器的电输运性能

南瑞华 王朋飞 坚增运 李晓娟

引用本文:
Citation:

CdZnTe像素探测器的电输运性能

南瑞华, 王朋飞, 坚增运, 李晓娟

Investigation on electrical transport properties of CdZnTe pixel detector

Nan Rui-Hua, Wang Peng-Fei, Jian Zeng-Yun, Li Xiao-Juan
PDF
导出引用
  • 碲锌镉(CdZnTe)是一种性能优异的室温核辐射半导体探测器材料,广泛应用于核安全、核医学以及空间科学等领域.然而,传统的CdZnTe平面探测器受制于空穴拖尾效应的影响,探测性能有待改善.采用改进的垂直布里奇曼法生长的In掺杂Cd0.9Zn0.1Te单晶制备出单载流子收集的44像素阵列探测器,通过电流-电压(I-V)测试和射线能谱响应测试,研究了像素探测器的电学性能和载流子电输运性能,随之与相应的CdZnTe平面探测器进行了性能对比.结果表明,CdZnTe像素探测器的电阻率约为1.7310 cm,且施加100 V偏压后单像素点的最大漏电流小于2.2 nA;当施加偏压升高至300 V时,单像素点对241Am@59.5 keV的射线的最佳能量分辨率可达5.78%,探测性能优于相同条件下制备的CdZnTe平面探测器.
    Semi-insulating cadmium zinc telluride (CdZnTe or CZT) is an excellent material candidate for fabricating room-temperature nuclear radiation semiconductor detectors due to its high resistivity and good carrier transport behaviors. It is widely used in nuclear security, nuclear medicine, space science, etc. Nevertheless, the traditional CdZnTe planar detector is subjected to the effect of hole trailing on its hole transport characteristic, where its energy resolution and the photoelectric peak efficiency both decrease, and thus deteriorating the detection performance. In order to eliminate the effect of hole capture, the electrode with pixel structure for CdZnTe detector is designed for detecting single carriers that are only electrons. In this paper, a 10 mm10 mm2 mm wafer cut from an In doped Cd0.9Zn0.1Te single crystal, grown by the modified vertical Bridgman method, is employed to fabricate a 44 CdZnTe pixel detector, which is composed of 16 small pixel units with an area of 2 mm2 mm. Each of the pixel units is linked up with ASIC multichannel preamplifier and shaping amplifier by flip chip technology. Finally, the signal is treated by an integrated sensing chip. In the first case, the electrical properties and carrier transport properties of CdZnTe pixel detector are characterized by current-voltage (I-V) measurement via an Agilent 4155C semiconductor parameter analyzer and ray energy spectrum response via a standard Multi Channel Analyzer 6560 spectra measurement system, respectively. In the second case, the differences between CdZnTe planar detector and 44 pixel detector in the detection performance are discussed in detail. The results indicate that the bulk resistivity of CdZnTe pixel detector is determined to be about 1.7310 cm by a linear fit of I-V curve. The maximum leakage current of a single pixel is less than 2.2 nA for a bias voltage of 100 V. Furthermore, the carrier transport behaviors are evaluated with the mobility-lifetime product for electron in CdZnTe detector, which is 5.4110-4 cm2V-1 estimated by ray energy spectroscopy response under various bias voltages from 50 to 300 V at room temperature. The energy resolutions of the two CdZnTe detectors can reflect the ability of them to distinguish different energy gays during operation. The best energy resolution of a single pixel in CdZnTe pixel detector for 241Am@59.5 keV ray increases up to 5.78% under a 300 V bias voltage, whereas that of CdZnTe planar detector is only 6.85% in the same conditions. As a consequence, the detection performance of 44 CdZnTe pixel detector is better than that of the planar detector.
      通信作者: 王朋飞, 18710748870@163.com
    • 基金项目: 国家自然科学基金项目(批准号:51502234,51602242)和凝固技术国家重点实验室(西北工业大学)开放课题(批准号:SKLSP201410)资助的课题.
      Corresponding author: Wang Peng-Fei, 18710748870@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51502234, 51602242) and the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University, China (Grant No. SKLSP201410).
    [1]

    Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54

    [2]

    Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46

    [3]

    Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]

    [4]

    Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]

    [5]

    Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25

    [6]

    Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215

    [7]

    Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93

    [8]

    Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578

    [9]

    Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122

    [10]

    Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713

    [11]

    Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [12]

    Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447

    [13]

    Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181

    [14]

    Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229

    [15]

    Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313

    [16]

    Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]

    [17]

    Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [18]

    Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158

    [19]

    Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]

    [20]

    Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395

    [21]

    Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033

  • [1]

    Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54

    [2]

    Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46

    [3]

    Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]

    [4]

    Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]

    [5]

    Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25

    [6]

    Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215

    [7]

    Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93

    [8]

    Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578

    [9]

    Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122

    [10]

    Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713

    [11]

    Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [12]

    Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447

    [13]

    Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181

    [14]

    Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229

    [15]

    Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313

    [16]

    Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]

    [17]

    Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274

    [18]

    Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158

    [19]

    Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]

    [20]

    Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395

    [21]

    Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033

计量
  • 文章访问数:  5668
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-04
  • 修回日期:  2017-07-20
  • 刊出日期:  2017-10-05

/

返回文章
返回