搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微结构气体探测器对单能和连续谱快中子的模拟解谱

程凯 魏鑫 曾德凯 季选韬 朱坤 王晓冬

引用本文:
Citation:

基于微结构气体探测器对单能和连续谱快中子的模拟解谱

程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬

Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector

Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong
PDF
HTML
导出引用
  • 本工作探索了基于Triple GEM探测器对快中子能谱的测量, 利用MCNPX和Geant4软件分别模拟了两种在Triple GEM阴极耦合由多层聚乙烯组成的堆栈式中子转化质子的转化模型, 研究对象包含了5种单能中子源和Am-Be连续谱中子源. 模拟得到了探测系统对160条单能中子的响应函数和上述源的反冲质子谱分布, 使用GRAVEL和MLEM算法对模拟得到的6种快中子源的反冲质子谱进行了解谱研究, 并把解谱结果与标准输入谱进行了对比, 结果显示与标准输入谱均符合较好, 解谱的相对不确定度为10%—15%; 并研究了气体探测器能量分辨率对解谱精度影响的关系, 结果表明微结构气体探测器的能量分辨率好于30%时, 快中子的解谱精度就可以满足实际应用需求. 本研究在以前的实验基础上提出了一种新的转化结构, 并通过模拟结果得出微结构气体探测器可以应用于快中子探测, 并能够利用得到的反冲质子谱结合合适的反演算法实现入射中子源的能谱重建. 本文积累的建模和解谱算法为将来微结构气体探测器组成的快中子探测系统应用于未知快中子源探测, 能谱重建, 实现源项识别提供了新的办法.
    This paper focuses on the feasibility of fast neutron energy spectrum measurement. The MCNPX and Geant4 are used to simulate two conversion models of stacking neutrons to protons in the triple GEM cathode coupled with multilayer polyethylene, with five kinds of single-energy neutron sources and Am-Be continuous neutron sources taken as research objects. The response function to 160 single energy neutrons and the recoil proton spectrum distribution of the above sources of the detection system are obtained by simulation. Using GRAVEL algorithm and MLEM algorithm and through simulation, the recoil proton spectra of six kinds of fast neutron sources are obtained, and they are further analyzed. The spectrum outcome is compared with the standard input spectrum, showing that they are in good agreement with each other. The relative uncertainty of the unfolding spectrum is around 10%–15%. In this part the relation of gas detector with the precision of unfolding spectrum is also discussed. The result shows that when the energy resolution of micro-pattern gas detection is better than 30%, the accuracy of fast neutron spectrum can meet the needs of practical applications. Furthermore, a new transformation model is proposed based on previous experiments and proves the feasibility of applying micro-pattern gas detector to fast neutron detection of simulation. Moreover, spectrum reconstruction can be achieved by using the obtained recoil proton spectrum combined with a suitable inversion algorithm. The modeling and spectrum analysis of this study can provide a different method of applying the fast neutron detection system composed of micro-pattern gas detectors to the detection of unknown fast neutron sources and also to the source recognition through spectrum reconstruction.
      通信作者: 王晓冬, wangxd@usc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875163, 11605086)、湖南省自然科学基金(批准号: 2018JJ3422)、湖南省教育厅基金 (批准号: 18C0461, 19B488, 19B487)和中国科学技术部基金(批准号: 2020YFE0202001)资助的课题
      Corresponding author: Wang Xiao-Dong, wangxd@usc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875163, 11605086), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3422), the Education Department of Hunan Province, China (Grant Nos. 18C0461, 19B488, 19B487), and the Foundation of the Ministry of Science and Technology of China (Grant No. 2020YFE0202001)
    [1]

    周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar

    Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar

    [2]

    祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar

    Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar

    [3]

    陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar

    Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar

    [4]

    Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar

    [5]

    Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670

    [6]

    Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742

    [7]

    Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar

    [8]

    Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109

    [9]

    Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar

    [10]

    言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar

    Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar

    [11]

    王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270

    Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270

    [12]

    林存宝 2011 硕士学位论文 (长沙: 国防科技大学)

    Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136

    Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136

    [14]

    Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531

    [15]

    Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001

    [16]

    Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901

    [17]

    Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar

    [18]

    王晓冬 2014 博士学位论文 (兰州: 兰州大学)

    Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [19]

    Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021

    [20]

    Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01

    [21]

    陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885

    Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885

    [22]

    陈晓亮, 赵守智 2016 原子能科学技术 49 2195

    Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195

    [23]

    Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67

    [24]

    Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337

    [25]

    Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018

    [26]

    陈国祥 2019 硕士学位论文 (衡阳: 南华大学)

    Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)

  • 图 1  中子进入Triple GEM探测器原理图(蓝色为HDPE, 绿色部分为CO2和Ar混合气体)

    Fig. 1.  Schematic diagram of the Triple GEM-based neutron detector (The blue color is HDPE, and the green part is the mixture of CO2 and Ar).

    图 2  不同能量的单能中子探测效率与聚乙烯厚度之间的关系及最优厚度

    Fig. 2.  The function of the detector efficiency with different polyethylene thicknesses.

    图 3  中子与单层聚乙烯弹性散射图探(红色点代表中子, 蓝色为质子)

    Fig. 3.  Screenshot of the elastic collision between neutrons and polyethylene in MCNPX (the red dots represent neutrons and the blue are protons).

    图 4  MCNPX与Geant4对不同中子源的测效率的模拟对比

    Fig. 4.  Simulation comparison of detection efficiency between MCNPX and Geant4 for the same thickness of polyethylene.

    图 5  MCNPX模拟的中子与多层聚乙烯相互作用(红色的点代表中子, 蓝色为质子)

    Fig. 5.  MCNPX simulated neutron interactions with multilayered polyethylene (the red dots for neutrons, the blue for protons).

    图 6  多层聚乙烯结构转化效率

    Fig. 6.  Conversion efficiency of multilayer polyethylene structures.

    图 7  M2模拟的堆栈结构示意图(蓝色、绿色、橘黄色和紫色分别代表不同厚度聚乙烯, 红色代表气隙厚度)

    Fig. 7.  Schematic diagram of the stack structure simulated by M2 (blue, green, orange, and purple represent different thicknesses of polyethylene respectively, red represents air gap thickness).

    图 8  不同中子源对应的响应函数

    Fig. 8.  Response functions corresponding to different neutron energies.

    图 9  不同入射中子对应的反冲质子在气隙中的沉积能量

    Fig. 9.  Deposition energy of recoil protons in the air gap corresponding to different incident neutrons.

    图 10  入射中子能量与反冲质子沉积能量关系

    Fig. 10.  Relationship between neutron incidence energy and recoil proton deposition energy.

    图 11  两种算法对Geant4软件和MCNPX软件模拟数据的解谱结果 (a) GRAVEL算法对单能中子解谱图; (b) MLEM算法对单能中子解谱图

    Fig. 11.  Results of two algorithms for solving the spectrum of simulated data from Geant4 software and MCNPX software: (a) GRAVEL algorithm on single-energy neutron unfolding spectra; (b) MLEM algorithm for single-energy neutron unfolding spectra.

    图 12  两种解谱算法对Geant4软件和MCNPX软件模拟Am-Be源的解谱结果 (a) MCNPX与Geant4基于GRAVEL算法的解谱结果; (b) MCNPX与Geant4基于MLEM算法的解谱结果

    Fig. 12.  Results of the unfolding of the simulated Am-Be sources by two solution algorithms for Geant4 software and MCNPX software: (a) Unfolding results of MCNPX and Geant4 based on GRAVEL algorithm; (b) unfolding results of MCNPX and Geant4 based on MLEM algorithm.

    图 13  反冲质子在气体探测器中的能量分辨率

    Fig. 13.  Energy resolution of recoil protons in gas detectors.

    图 14  相对不确定度与能量分辨率的关系

    Fig. 14.  Plot of relative uncertainty versus energy resolution.

    表 1  Geant4和MCNPX对不同中子源与聚乙烯相互作用的最佳厚度和探测效率的模拟结果

    Table 1.  Simulation results of Geant4 and MCNPX for the optimal thickness and detection efficiency of different neutron sources interacting with polyethylene.

    中子源DTAm-BeDD
    最优厚度/μm探测效率/% 最优厚度/μm探测效率/% 最优厚度/μm探测效率/%
    Geant420000.36 12000.12 6000.07
    MCNPX18000.329000.095000.03
    下载: 导出CSV

    表 2  MCNPX两种结构和Geant4模拟结果经MLEM算法和GRAVEL算法解谱后误差水平

    Table 2.  Error levels of the two MCNPX structures and Geant4 simulation results after unfolding by the MLEM and GRAVEL algorithms.

    G1M1M2
    MLEMGRAVEL MLEMGRAVEL MLEMGRAVEL
    MSE0.48%0.65% 2.1%2.4% 1.4%1.8%
    ARD18.00%19.00%21.0%22.0%20.0%21.0%
    Qs12.00%14.00%28.0%30.0%19.0%21.0%
    下载: 导出CSV
  • [1]

    周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar

    Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar

    [2]

    祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar

    Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar

    [3]

    陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar

    Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar

    [4]

    Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar

    [5]

    Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670

    [6]

    Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742

    [7]

    Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar

    [8]

    Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109

    [9]

    Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar

    [10]

    言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar

    Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar

    [11]

    王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270

    Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270

    [12]

    林存宝 2011 硕士学位论文 (长沙: 国防科技大学)

    Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136

    Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136

    [14]

    Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531

    [15]

    Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001

    [16]

    Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901

    [17]

    Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar

    [18]

    王晓冬 2014 博士学位论文 (兰州: 兰州大学)

    Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [19]

    Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021

    [20]

    Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01

    [21]

    陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885

    Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885

    [22]

    陈晓亮, 赵守智 2016 原子能科学技术 49 2195

    Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195

    [23]

    Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67

    [24]

    Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337

    [25]

    Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018

    [26]

    陈国祥 2019 硕士学位论文 (衡阳: 南华大学)

    Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 张双, 贺三军, 廖峰, 罗万, 周芷千, 高波, 刘丽艳, 赵修良. 基于Boosted-Gold算法的γ能谱反演分析. 物理学报, 2022, 71(10): 102901. doi: 10.7498/aps.71.20212429
    [3] 孟猛, 祁强, 赫崇君, 丁栋舟, 赵书文, 施俊杰, 任国浩. Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响. 物理学报, 2021, 70(6): 066101. doi: 10.7498/aps.70.20201697
    [4] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [5] 皮少华, 王冰洁, 赵栋, 贾波. 分布式光纤Sagnac干涉仪中基于倒谱的多分辨率入侵定位算法. 物理学报, 2016, 65(4): 044210. doi: 10.7498/aps.65.044210
    [6] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究. 物理学报, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [7] 李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦. 基于焦斑空间频率全域优化的偏振匀滑设计. 物理学报, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [8] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, 2013, 62(15): 150703. doi: 10.7498/aps.62.150703
    [9] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [10] 周林, 蒋世伦, 祁建敏, 王立宗. 反冲质子磁分析技术用于氘氚中子能谱测量研究. 物理学报, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [11] 樊瑞睿, 侯凤杰, 欧阳群, 范胜男, 陈元柏, 伊福廷. micro-bulk工艺micromegas的研究. 物理学报, 2012, 61(9): 092901. doi: 10.7498/aps.61.092901
    [12] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫. 利用252 Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数. 物理学报, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [13] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [14] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [15] 张海涛, 崔瑞祯, 王东生, 闫 平, 陈 刚, 柳 强. 基于Phong模式的分裂Monte Carlo模拟红外室内信道脉冲响应函数. 物理学报, 2005, 54(8): 3610-3615. doi: 10.7498/aps.54.3610
    [16] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化. 物理学报, 1990, 39(8): 96-99. doi: 10.7498/aps.39.96
    [17] 李晨曦, 陆坤权, 赵雅琴. 能量分辨率对EXAFS的影响. 物理学报, 1987, 36(11): 1496-1502. doi: 10.7498/aps.36.1496
    [18] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [19] 陆坤权, 常龙存, 赵雅琴. X射线连续谱晶体单色器的分辨率. 物理学报, 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
    [20] 张焕乔. 中子平面晶体谱仪的分辨宽度. 物理学报, 1963, 19(8): 477-482. doi: 10.7498/aps.19.477
计量
  • 文章访问数:  3279
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2021-01-20
  • 上网日期:  2021-05-25
  • 刊出日期:  2021-06-05

/

返回文章
返回