-
In the measurement of pulsed neutrons in the MeV energy range, plastic scintillators are one of the most widely used materials, and their neutron energy spectrum response is the key data required for pulsed neutron energy spectrum measurement. Base on the time of flight (TOF) method, the neutron energy spectrum response of ST401 plastic scintillator with 5 different thicknesses from 0.5 to 10 mm were measured for the 0.5 to 100 MeV energy range on the white neutron source (WNS) beamline of the China Spallation Neutron Source (CSNS). The effects of in-beam gamma rays, the slow component of scintillators produced by the gamma flash and the pulse width of the neutron source on the measurement of neutron spectrum response were analyzed. Due to the boundary effect of the finite volume of the scintillator, the neutron energy spectrum response curves of ST401 with different thicknesses are approximately logarithmic, and proton escape is the main reason for the deviation of the curve from linearity. The thicker the scintillator, the higher neutron energy that deviates from linearity.
-
图 10 0.01—100 MeV质子(中子)在塑料闪烁体中的平均射程(迁移长度) (a) 对数坐标; (b) (a)图中蓝色虚线方框内曲线在线性坐标下的放大展示
Fig. 10. The average range (migration length) of 0.01–100 MeV protons (neutrons) in plastic scintillators: (a) Range and migration length in logarithmic coordinates; (b) enlargement of the curves in the blue square in (a).
-
[1] 刘兆庆 1994 脉冲辐射场诊断技术 (北京: 科学出版社)第12页
Liu Z Q, 1994 Pulse Radiation Field Diagnostic Technology (Beijing: Science Press) p12
[2] 易义成, 宋朝晖, 管兴胤, 韩和同, 卢毅, 郝帅 2023 现代应用物理 14 10202Google Scholar
Yi Y C, Song Z H, Guan X Y, Han H T, Lu Y, Hao S 2023 Mod. Appl. Phys. 14 10202Google Scholar
[3] 杨洪琼, 彭太平, 杨建伦, 唐正元, 杨高照, 李林波, 胡孟春, 王振通, 张建华, 李忠宝, 王立宗 2004 核电子学与探测技术 24 640
Yang H Q, Peng T P, Yang J L, Tang Z Y, Yang G Z, Li L B, Hu M C, Wang Z T, Zhang J H, Li Z B, Wang L Z 2004, Nucl. Electron. & Detect. Technol. 24 640
[4] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩 2017 物理学报 66 062401Google Scholar
Yao Z M, Duan B J, Song G Z, Yan W P, Ma J M, Han C C, Song Y 2017 Acta Phys. Sin. 66 062401Google Scholar
[5] Verbinski V V, Burrus W R, Love T A, Zobel W, Hill N W, Textor R 1968 Nucl. Instrum. Methods 65 8Google Scholar
[6] 张国光, 欧阳晓平, 张建福, 王志强, 张忠兵, 马彦良, 张显鹏, 陈军, 张小东, 潘洪波, 骆海龙, 刘毅娜 2006 物理学报 55 2165Google Scholar
Zhang G G, Ouyang X P, Zhang J F, Wang Z Q, Zhang Z B, Ma Y L, Zhang X P, Chen J, Zhang X D, Pan H B, Luo H L, Liu Y N 2006 Acta Phys. Sin. 55 2165Google Scholar
[7] Madey R, Waterman F M, Baldwin A R, Knudson J N, Carlson J D, Rapaport J 1978 Nucl. Instrum. Methods 151 445Google Scholar
[8] 张传飞, 彭太平, 罗小兵, 李如荣, 张建华, 夏宜君, 杨志华, 林理彬 2002 四川大学学报(自然科学版) 39 487
Zhang C F, Peng T P, Luo X B, Li R R, Zhang J H, Xia Y J, Yang Z H, Lin L B 2002 J. Sichuan Univ. (Nat. Sci. Ed. ) 39 487
[9] 彭太平, 罗小兵, 张传飞, 李如荣, 张建华, 夏宜君, 杨志华 2002 原子核物理评论 19 357Google Scholar
Peng T P, Luo X B, Zhang C F, Li R R, Zhang J H, Xia Y J, Yang Z H 2002 Nucl. Phys. Rev. 19 357Google Scholar
[10] 罗小兵, 张传飞, 彭太平, 李如荣, 张建华, 夏宜军, 杨志华 2004 核电子学与探测技术 24 186
Luo X B, Zhang C F, Peng T P, Li R R, Zhang J H, Xia Y J, Yang Z H 2004 Nucl. Electron. & Detect. Technol. 24 186
[11] 宋顾周, 谢红卫, 王奎禄, 朱宏权 2008 核电子学与探测技术 28 845Google Scholar
Song G Z, Xie H W, Wang K L, Zhu H Q 2008 Nucl. Electron. Detect. Technol. 28 845Google Scholar
[12] 杨建伦, 彭先觉, 杨洪琼, 杨高照, 王立宗, 钟耀华 2004 核电子学与探测技术 24 346Google Scholar
Yang J L, Peng X J, Yang H Q, Yang G Z, Wang L Z, Zhong Y H 2004 Nucl. Electron. Detect. Technol. 24 346Google Scholar
[13] Edelstein R M, Russ J S, Thatcher R C, Elfield M, Miller E L, Reay N W, Stanton N R, Abolins M A, Lin M T, Edwards K W, Gill D R 1972 Nucl. Instrum. Methods 100 355Google Scholar
[14] Betti G, Guerra A D, Giazotto A, Giorgi M A, Stefanini A, Botterill D R, Braben D W, Clarke D, Norton P R 1976 Nucl. Instrum. Methods 135 129
[15] Cecil R A, Anderson B D, Madey R 1979 Nucl. Instrum. Methods 161 439Google Scholar
[16] Wei J, Chen H S, Chen Y W, et al. 2009 Nucl. Instrum. Meth. A 600 10
[17] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 145Google Scholar
[18] 任杰, 阮锡超, 陈永浩 等 2020 物理学报 69 172901Google Scholar
Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar
[19] 袁秀丽, 姚岁劳, 王丹妮, 阎珍德, 唐兆荣, 蒋李君, 高兴兵, 殷生华, 贾景光, 张志雄, 林德雨2024 GB/T13181-2024(北京: 中国标准出版社)] [20] Ji C S 1990 Handbook of Nuclear Radiation Detectors & Their Experiment Techniques (Beijing: Atomic Energy Press) [汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社)]
Yuan X L, Yao S L, Wang D N, Yan Z D, Tang Z R, Jiang L J, Gao X B, Yin S H, Jia J G, Zhang Z X, Lin D Y 2024 GB/T13181-2024 (Beijing: China Standard Press
[20] http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html/ [2024-8-30]
[21] Gohil M, Banerjee K, Bhattacharya S, Bhattacharya C, Kundu S, Rana T K , Mukherjee G, Meena J K, Pandey R, Pai H, Ghosh T K, Dey A, Mukhopadhyay S, Pandit D, Pal S, Banerjee S R, Bandhopadhyay T 2012 Nucl. Instrum. Meth. A 664 304
[22] 杨洋, 党同强, 王志刚, 王明煌, 杨战国, 常博, 宋勇, 周涛 2024 现代应用物理 15 10201Google Scholar
Yang Y, Dang T Q, Wang Z G, Wang M H, Yang Z G, Chang B, Song Y, Zhou T 2024 Mod. Appl. Phys. 15 10201Google Scholar
[23] 秋妍妍, 谭志新, 易晗, 贺永宁, 赵小龙, 樊瑞睿 2023 现代应用物理 14 30203
Qiu Y Y, Tan Z X, Yi H, He Y N, Zhao X L, Fan R R 2023 Mod. Appl. Phys. 14 30203
计量
- 文章访问数: 130
- PDF下载量: 0
- 被引次数: 0