搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于载流子猝灭模型的闪烁体发光非线性效应理论分析及实验验证

魏坤 黑东炜 刘军 徐青 翁秀峰 谭新建

引用本文:
Citation:

基于载流子猝灭模型的闪烁体发光非线性效应理论分析及实验验证

魏坤, 黑东炜, 刘军, 徐青, 翁秀峰, 谭新建

Theoretical analysis and experimental verification of scintillator luminescence nonlinearity based on carrier quenching model

Wei Kun, Hei Dong-Wei, Liu Jun, Xu Qing, Weng Xiu-Feng, Tan Xin-Jian
PDF
HTML
导出引用
  • 闪烁体探测器是辐射物理领域重要的探测器件, 闪烁体作为其中的核心部分, 其特性受到广泛研究, 特别是闪烁体在高激发密度下的非线性效应由于其对测量结果的直接影响而得到格外关注. 本文结合目前国内外闪烁体发光的相关理论, 以载流子方程为基础, 量化分析了激子的二阶猝灭效应对于载流子动力学过程的影响, 着重计算分析了脉冲测量场景下不同激发密度产生的不同初始载流子浓度对于闪烁体光衰减曲线、光产额以及效率的影响. 接着利用光致激发实验, 研究了CeF3闪烁体光产额与激发密度的关系, 并利用载流子猝灭模型对实验数据进行了拟合, 拟合曲线与实验数据一致性较高, 并得到了CeF3闪烁体10%非线性效应对应的能量密度阈值. 通过本文研究工作建立的物理模型, 结合不同的模型参数, 可以实现多种闪烁材料发光非线性特性的预测和解释, 对于理解及解决实验中遇到的闪烁体在高激发密度下产生的非线性效应问题具有重要作用.
    The scintillator detector is one of the most important detectors in the field of radiation detection and radiation physics. The characteristics and performance of scintillator that is a core part of the measurement system, are widely studied. Especially, the nonlinearity of scintillators under high excitation density has received more attention because of its direct influence on the measurement results. In this paper, physical modeling and experimental research on this problem are carried out in-depth.First, the second-order quenching effect of excitons on the scintillator luminescence process is quantitatively analyzed based on the carrier dynamic equation. The luminescence attenuation curves of scintillator under different initial carrier concentrations generated by different excitation densities are obtained. The relationship of the light yield and the efficiency of scintillator with the initial carrier concentration is analyzed, and the results show that with the increase of the initial carrier concentration, the light yield tends to be saturated and the light efficiency decreases. Then CeF3 scintillator is studied in the Z-scan photoluminescence experiment. The relationship between the light yield and the excitation density is obtained, and the experimental data can be fitted by the carrier quenching model well, which verifies the physical model. At the same time, the energy density threshold corresponding to the 10% nonlinearity of CeF3 scintillator is obtained.The physical model established in this paper can be used to predict and explain the nonlinear luminescence of various scintillation materials according to different parameters of crystal materials, which is important to understand and solve the nonlinearity problem of scintillators under high excitation density in practical application of radiation detection.
      通信作者: 黑东炜, heidw@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11905173)和西北核技术研究所预先研究课题(批准号: 13021901)资助的课题.
      Corresponding author: Hei Dong-Wei, heidw@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905173) and the Northwest Institute of Nuclear Technology Pre-research Project, China (Grant No. 13021901).
    [1]

    Moses W W, BizarriG A, WilliamsR T, Payne S A, Vasil'ev A N, Singh J, Li Q, Grim J Q, Choong W S 2012 IEEE Trans. Nucl. Sci. 59 2038Google Scholar

    [2]

    Khodyuk I V, Dorenbos P 2012 IEEE Trans. Nucl. Sci. 59 3320Google Scholar

    [3]

    Moses W W, PayneS A, ChoongW S, Hull G, Reutter B W 2008 IEEE Trans. Nucl. Sci. 55 1049Google Scholar

    [4]

    Siengsanoh K, LimkitjaroenpornP, Sustini E, Kaewkhao J 2018 Mater. Today Proc. 5 15024Google Scholar

    [5]

    Limkitjaroenporn P, Hongtong W, Chaiphaksa W, Kang S J, Kaewkhao J, Siengsanoh K 2018 Mater. Today Proc. 5 15110Google Scholar

    [6]

    Klamra W, Balcerzyk M, Czarnacki W, Kozlov V, Mosynski M, Syntfeld-Kazuch A, Szczesniak T 2009 J. Instrum. 4 05006Google Scholar

    [7]

    Swiderski L, Marcinkowski R, Szawłowski M, Mosynski M, CzarnackiW, Syntfeld-Kazuch A, Szczesniak T, Pausch G, Plettner C, Roemer K 2012 IEEE Trans. Nucl. Sci. 59 222Google Scholar

    [8]

    Chen X, Han H T, Li G 2017 Radiat. Meas. 97 42Google Scholar

    [9]

    管兴胤, 张子川, 张文钰 2009 原子能科学与技术 43 942Google Scholar

    Guan X Y, Zhang Z C, Zhang W Y 2009 Atomic Energy Sci. Tech 43 942Google Scholar

    [10]

    宋朝晖, 李刚, 王奎禄, 胡华四, 代秋声 2004 核电子学与探测技术 24 461Google Scholar

    Song Z H, Li G, Wang K L, Hu H S, Dai Q S 2004 Nuclear Electron. Detection Tech. 24 461Google Scholar

    [11]

    Spassky D, Vasil'ev A, Belsky A, Fedorov N, Martin P, Markov S, Buzanov O, Kozlova N, Shlegel V 2019 Opt. Mater. 90 7Google Scholar

    [12]

    Grim J Q, Ucer K B, Burger A, BhattacharyaP, Tupitsyn E, Rowe E, Buliga V M, Trefilova L, Gektin A, Bizarri G A, Moses W W, Williams R T 2013 Phys. Rev. B 87 125117Google Scholar

    [13]

    Williams R T, GrimJ Q, Li Q, Ucer K B, Bizarri G A, Kerisit S, Gao F, Bhattacharya P, Tupitsyn E, Rowe E, Buliga V M, Burger A 2013 Proc. SPIE 8852 88520JGoogle Scholar

    [14]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [15]

    任杰, 阮锡超, 陈永浩, 等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [16]

    Krzywinski J, Andrejczuk A, Bionta R M, Burian T, Chalupsky J, Jurek M, Krim M, Nagirnyi V, Sobierajski R, Tiedtke K, Vielhauer S, Juha L 2017 Opt. Mater. Express 7 665Google Scholar

    [17]

    Vielhauer S, Babina V, De Graziab M, Feldach E, Kirm M, Nagirnyi V, Vasil'ev A 2009 Proc. SPIE 7361 73610RGoogle Scholar

    [18]

    Vielhauer S, Babin V, De Grazia M, Feldbach E, Kirm M, Nagirnyi V, Vasil'ev A 2008 Phys. Solid State 50 1789Google Scholar

    [19]

    Kirm M, Andrejczuk A, Krzywinski J, Sobierajski R 2005 Phys. Stat. Sol.(c) 2 649Google Scholar

    [20]

    Förster T H 1948 Ann. Phys. 55 437

    [21]

    Clegg R M, Herman B 1995 Methods Enzymol. 6 1Google Scholar

    [22]

    Wu P G, Brand L 1994 Anal. Biochem. 218 1Google Scholar

    [23]

    Belsky A N, Kamenskikh I A, Mikhailin V V, Pedrini C, Vasil'ev A N 1998 Radiat. Eff. Defect. S. 150 1Google Scholar

    [24]

    施朝淑, 陈永虎, 张国斌, 许小亮, 汤洪高 2002 发光学报 23 217Google Scholar

    Shi C S, Chen Y H, Zhang G B, Xu X L, Tang H G 2002 Chin. J. Lumin. 23 217Google Scholar

    [25]

    Nagirnyi V, Dolgov S, Grigonis R, Kirm M, Nagornaya L L, Savikhin F, Sirutkaitis V, Vielhauer S, A. Vasil'ev A 2010 IEEE Trans Nucl. Sci. 57 1182Google Scholar

  • 图 1  不同初始载流子浓度下的归一化荧光衰减曲线

    Fig. 1.  Normalized luminescence attenuation curves at different initial carrier concentrations.

    图 2  光产额与初始载流子浓度的关系

    Fig. 2.  Relationship between luminescence yield and initial carrier concentration.

    图 3  光效率与初始载流子浓度的关系

    Fig. 3.  Relationship between luminescence efficiency and initial carrier concentration.

    图 4  Z扫描实验设置示意图

    Fig. 4.  Schematic diagram of Z scan experiment settings

    图 5  CeF3晶体不同Z处的荧光波形曲线

    Fig. 5.  Luminescence waveform curves at different Z of CeF3 crystal.

    图 6  CeF3的Z扫描实验数据及拟合曲线

    Fig. 6.  Z-scan experimental data and fitting curve of CeF3.

  • [1]

    Moses W W, BizarriG A, WilliamsR T, Payne S A, Vasil'ev A N, Singh J, Li Q, Grim J Q, Choong W S 2012 IEEE Trans. Nucl. Sci. 59 2038Google Scholar

    [2]

    Khodyuk I V, Dorenbos P 2012 IEEE Trans. Nucl. Sci. 59 3320Google Scholar

    [3]

    Moses W W, PayneS A, ChoongW S, Hull G, Reutter B W 2008 IEEE Trans. Nucl. Sci. 55 1049Google Scholar

    [4]

    Siengsanoh K, LimkitjaroenpornP, Sustini E, Kaewkhao J 2018 Mater. Today Proc. 5 15024Google Scholar

    [5]

    Limkitjaroenporn P, Hongtong W, Chaiphaksa W, Kang S J, Kaewkhao J, Siengsanoh K 2018 Mater. Today Proc. 5 15110Google Scholar

    [6]

    Klamra W, Balcerzyk M, Czarnacki W, Kozlov V, Mosynski M, Syntfeld-Kazuch A, Szczesniak T 2009 J. Instrum. 4 05006Google Scholar

    [7]

    Swiderski L, Marcinkowski R, Szawłowski M, Mosynski M, CzarnackiW, Syntfeld-Kazuch A, Szczesniak T, Pausch G, Plettner C, Roemer K 2012 IEEE Trans. Nucl. Sci. 59 222Google Scholar

    [8]

    Chen X, Han H T, Li G 2017 Radiat. Meas. 97 42Google Scholar

    [9]

    管兴胤, 张子川, 张文钰 2009 原子能科学与技术 43 942Google Scholar

    Guan X Y, Zhang Z C, Zhang W Y 2009 Atomic Energy Sci. Tech 43 942Google Scholar

    [10]

    宋朝晖, 李刚, 王奎禄, 胡华四, 代秋声 2004 核电子学与探测技术 24 461Google Scholar

    Song Z H, Li G, Wang K L, Hu H S, Dai Q S 2004 Nuclear Electron. Detection Tech. 24 461Google Scholar

    [11]

    Spassky D, Vasil'ev A, Belsky A, Fedorov N, Martin P, Markov S, Buzanov O, Kozlova N, Shlegel V 2019 Opt. Mater. 90 7Google Scholar

    [12]

    Grim J Q, Ucer K B, Burger A, BhattacharyaP, Tupitsyn E, Rowe E, Buliga V M, Trefilova L, Gektin A, Bizarri G A, Moses W W, Williams R T 2013 Phys. Rev. B 87 125117Google Scholar

    [13]

    Williams R T, GrimJ Q, Li Q, Ucer K B, Bizarri G A, Kerisit S, Gao F, Bhattacharya P, Tupitsyn E, Rowe E, Buliga V M, Burger A 2013 Proc. SPIE 8852 88520JGoogle Scholar

    [14]

    鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar

    Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar

    [15]

    任杰, 阮锡超, 陈永浩, 等 2020 物理学报 69 172901Google Scholar

    Ren J, Ruan X C, Chen Y H, et al. 2020 Acta Phys. Sin. 69 172901Google Scholar

    [16]

    Krzywinski J, Andrejczuk A, Bionta R M, Burian T, Chalupsky J, Jurek M, Krim M, Nagirnyi V, Sobierajski R, Tiedtke K, Vielhauer S, Juha L 2017 Opt. Mater. Express 7 665Google Scholar

    [17]

    Vielhauer S, Babina V, De Graziab M, Feldach E, Kirm M, Nagirnyi V, Vasil'ev A 2009 Proc. SPIE 7361 73610RGoogle Scholar

    [18]

    Vielhauer S, Babin V, De Grazia M, Feldbach E, Kirm M, Nagirnyi V, Vasil'ev A 2008 Phys. Solid State 50 1789Google Scholar

    [19]

    Kirm M, Andrejczuk A, Krzywinski J, Sobierajski R 2005 Phys. Stat. Sol.(c) 2 649Google Scholar

    [20]

    Förster T H 1948 Ann. Phys. 55 437

    [21]

    Clegg R M, Herman B 1995 Methods Enzymol. 6 1Google Scholar

    [22]

    Wu P G, Brand L 1994 Anal. Biochem. 218 1Google Scholar

    [23]

    Belsky A N, Kamenskikh I A, Mikhailin V V, Pedrini C, Vasil'ev A N 1998 Radiat. Eff. Defect. S. 150 1Google Scholar

    [24]

    施朝淑, 陈永虎, 张国斌, 许小亮, 汤洪高 2002 发光学报 23 217Google Scholar

    Shi C S, Chen Y H, Zhang G B, Xu X L, Tang H G 2002 Chin. J. Lumin. 23 217Google Scholar

    [25]

    Nagirnyi V, Dolgov S, Grigonis R, Kirm M, Nagornaya L L, Savikhin F, Sirutkaitis V, Vielhauer S, A. Vasil'ev A 2010 IEEE Trans Nucl. Sci. 57 1182Google Scholar

  • [1] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [2] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [3] 赵旺, 平兆艳, 郑庆华, 周薇薇. 白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为. 物理学报, 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [4] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [5] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [6] 瞿定荣, 范凤英, 宋增云. 光化学反应中氩气对激发态锂原子猝灭速率研究. 物理学报, 2014, 63(3): 032801. doi: 10.7498/aps.63.032801
    [7] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [8] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [9] 韩 琳, 宋 峰, 邹昌光, 苏 静, 闫立华, 田建国, 张光寅. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究. 物理学报, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [10] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究. 物理学报, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [11] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用. 物理学报, 2004, 53(2): 620-625. doi: 10.7498/aps.53.620
    [12] 曹冬梅, 李永放, 毕冬艳, 王利强, 成延春. 静电场作用下双势阱分子隧道效应的猝灭及能级裂距的非线性特性研究. 物理学报, 2004, 53(8): 2444-2449. doi: 10.7498/aps.53.2444
    [13] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [14] 梁忠诚, 明海, 王沛, 章江英, 龙云泽, 夏勇, 谢建平, 张其锦. 偶氮液晶聚合物中的非线性光致双折射. 物理学报, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [15] 武鹏飞, 汤国庆, 张桂兰, 陈文驹. 光致异构分子动态非线性吸收理论分析. 物理学报, 1996, 45(5): 779-788. doi: 10.7498/aps.45.779
    [16] 杨淼, 司金海, 王玉晓, 李淳飞. 基于激发态非线性折射效应的全光开关与光限幅. 物理学报, 1995, 44(3): 419-426. doi: 10.7498/aps.44.419
    [17] 冯量, 霍裕昆. 稀薄等离子体中逆轫致吸收的非线性强光效应. 物理学报, 1995, 44(12): 1894-1903. doi: 10.7498/aps.44.1894
    [18] 杜功焕. 非线性有限束光声效应理论. 物理学报, 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
    [19] 罗诗裕, 刘曾荣, 邵明珠. 半导体光磁电效应的非线性特征. 物理学报, 1987, 36(5): 547-554. doi: 10.7498/aps.36.547
    [20] 贺贤土. 激励Brillouin散射非线性致稳过程的阻尼效应. 物理学报, 1982, 31(7): 882-894. doi: 10.7498/aps.31.882
计量
  • 文章访问数:  5209
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-08-12
  • 上网日期:  2021-09-10
  • 刊出日期:  2021-12-20

/

返回文章
返回