-
采用高温固相法成功合成出双钙钛矿结构SrGd1-xLiTeO6:xEu3+(x=0.1–1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu3+的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.A series of SrGd1-xLiTeO6:xEu3+ (x=0.1-1) red-emitting phosphors, prepared by high-temperature solid-state reaction at 1100℃, is thoroughly investigated by means of X-ray diffraction, diffuse reflectance spectra, photoluminescence spectra, and electroluminescence spectra. These double-perovskite-type phosphors crystallize into monoclinic systems with space group P21/n(14), accommodate Eu3+ in a highly distorted C1 site symmetry without inversion center, and facilitate the enhancing of the 5D0 → 7F2 hypersensitive transition. The excitation spectra, emission spectra and decay curves indicate that the optimum doping concentration of Eu3+ is x=0.6. The SrGd0.4LiTeO6:0.6Eu3+ presents the strongest excitation peak at 395 nm, which is adequate for near-UV light-emitting diode (LED) pumping; meanwhile, it exhibits an intense red emission with chromaticity coordinates of (0.6671, 0.3284), an asymmetry ratio of 7.56, a color purity of 98.6%, and a luminous efficacy of radiation of 249 lm/W. The fluorescence lifetime is 721 μs, from which the internal quantum efficiency is determined to be 89.7% via the Judd-Ofelt analysis. The formula proposed by van Uiter (van Uitert L G 1967 J. Electrochem. Soc. 114 1048), is used to elucidate the energy transfer mechanism. However, the plot of log(I/x)-log(x) produces a confusing index s=4.26, which makes it difficult to distinguish the dipole-dipole interaction from the exchange interaction. After analyzing the reason of error, we present a new plot of log(I0'/I-1)-log(x), in which I0'=I0/x0 and I'=I/x, with x0 corresponding to the low doping content without nonradiative energy transfer. This plot gives rise to s=5.25, a more reasonable value for the dipole-dipole interaction. The integrated emission intensity at 423 K is as high as 85.2% of that at ambient temperature. The thermal activation energy is determined to be 0.2941 eV according to the model based on a temperature-dependent pathway through a charge transfer state. The prototypical LED based on it can emit a bright red light beam. In conclusion, the phosphor exhibits favorable luminous efficiency, color purity and thermal stability of luminescence, which promises solid-state lighting and display applications.
-
Keywords:
- Eu3+ /
- red-emitting phosphor /
- concentration quenching /
- thermal quenching
[1] Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868
[2] Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495
[3] Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454
[4] Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064
[5] Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891
[6] Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701
[7] Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424
[8] Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285
[9] Judd B R 1966 J. Chem. Phys. 44 839
[10] Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720
[11] Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383
[12] Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662
[13] Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909
[14] Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303
[15] Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324
[16] Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43
[17] Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701
[18] Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305
[19] Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344
[20] Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935
[21] Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164
[22] Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156
[23] Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565
[24] Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660
[25] Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56
[26] Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72
[27] Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33
[28] Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54
[29] López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599
[30] Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177
[31] Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153
[32] Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958
[33] Judd B R 1962 Phys. Rev. 127 750
[34] Ofelt G S 1962 J. Chem. Phys. 37 511
[35] Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542
[36] Tanner P A 2013 Chem. Soc. Rev. 42 5090
[37] Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321
[38] Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107
[39] Blasse G 1968 Phys. Lett. A 28 444
[40] van Uitert L G 1967 J. Electrochem. Soc. 114 1048
[41] Riseberg L A, Moos H W 1968 Phys. Rev. 174 429
[42] Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364
[43] Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294
[44] Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451
-
[1] Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868
[2] Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495
[3] Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454
[4] Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064
[5] Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891
[6] Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701
[7] Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424
[8] Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285
[9] Judd B R 1966 J. Chem. Phys. 44 839
[10] Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720
[11] Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383
[12] Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662
[13] Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909
[14] Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303
[15] Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324
[16] Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43
[17] Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701
[18] Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305
[19] Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344
[20] Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935
[21] Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164
[22] Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156
[23] Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565
[24] Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660
[25] Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56
[26] Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72
[27] Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33
[28] Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54
[29] López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599
[30] Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177
[31] Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153
[32] Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958
[33] Judd B R 1962 Phys. Rev. 127 750
[34] Ofelt G S 1962 J. Chem. Phys. 37 511
[35] Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542
[36] Tanner P A 2013 Chem. Soc. Rev. 42 5090
[37] Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321
[38] Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107
[39] Blasse G 1968 Phys. Lett. A 28 444
[40] van Uitert L G 1967 J. Electrochem. Soc. 114 1048
[41] Riseberg L A, Moos H W 1968 Phys. Rev. 174 429
[42] Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364
[43] Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294
[44] Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451
计量
- 文章访问数: 6470
- PDF下载量: 81
- 被引次数: 0