搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为

赵旺 平兆艳 郑庆华 周薇薇

引用本文:
Citation:

白光发光二极管用SrGdLiTeO6:Eu3+红色荧光粉的浓度猝灭和温度猝灭行为

赵旺, 平兆艳, 郑庆华, 周薇薇

Concentration and thermal quenching of SrGdLiTeO6: Eu3+ red-emitting phosphor for white light-emitting diode

Zhao Wang, Ping Zhao-Yan, Zheng Qing-Hua, Zhou Wei-Wei
PDF
导出引用
  • 采用高温固相法成功合成出双钙钛矿结构SrGd1-xLiTeO6xEu3+x=0.1–1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu3+的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.
    A series of SrGd1-xLiTeO6:xEu3+ (x=0.1-1) red-emitting phosphors, prepared by high-temperature solid-state reaction at 1100℃, is thoroughly investigated by means of X-ray diffraction, diffuse reflectance spectra, photoluminescence spectra, and electroluminescence spectra. These double-perovskite-type phosphors crystallize into monoclinic systems with space group P21/n(14), accommodate Eu3+ in a highly distorted C1 site symmetry without inversion center, and facilitate the enhancing of the 5D07F2 hypersensitive transition. The excitation spectra, emission spectra and decay curves indicate that the optimum doping concentration of Eu3+ is x=0.6. The SrGd0.4LiTeO6:0.6Eu3+ presents the strongest excitation peak at 395 nm, which is adequate for near-UV light-emitting diode (LED) pumping; meanwhile, it exhibits an intense red emission with chromaticity coordinates of (0.6671, 0.3284), an asymmetry ratio of 7.56, a color purity of 98.6%, and a luminous efficacy of radiation of 249 lm/W. The fluorescence lifetime is 721 μs, from which the internal quantum efficiency is determined to be 89.7% via the Judd-Ofelt analysis. The formula proposed by van Uiter (van Uitert L G 1967 J. Electrochem. Soc. 114 1048), is used to elucidate the energy transfer mechanism. However, the plot of log(I/x)-log(x) produces a confusing index s=4.26, which makes it difficult to distinguish the dipole-dipole interaction from the exchange interaction. After analyzing the reason of error, we present a new plot of log(I0'/I-1)-log(x), in which I0'=I0/x0 and I'=I/x, with x0 corresponding to the low doping content without nonradiative energy transfer. This plot gives rise to s=5.25, a more reasonable value for the dipole-dipole interaction. The integrated emission intensity at 423 K is as high as 85.2% of that at ambient temperature. The thermal activation energy is determined to be 0.2941 eV according to the model based on a temperature-dependent pathway through a charge transfer state. The prototypical LED based on it can emit a bright red light beam. In conclusion, the phosphor exhibits favorable luminous efficiency, color purity and thermal stability of luminescence, which promises solid-state lighting and display applications.
    • 基金项目: 安徽省自然科学基金(批准号:1708085QE91)、安徽省教育厅科研基金(批准号:gxyqZD2016259,gxyqZD2016260,KJ2016A673,gxbjZD37)、淮南市/校级科研创新团队(批准号:2016A24)和淮南师范学院校级研究项目(批准号:2015hsjyxm07,2015hsyxkc15,2017hsyxkc70)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1708085QE91), the Scientific Research Foundation of the Education Department of Anhui Province, China (Grant Nos. gxyqZD2016259, gxyqZD2016260, KJ2016A673, gxbjZD37), the Innovative Research Team of Huainan City, China (Grant No. 2016A24), and the Research Program of Huainan Normal University, China (Grant Nos. 2015hsjyxm07, 2015hsyxkc15, 2017hsyxkc70).
    [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1]

    Nakamura S, Senoh M, Iwasa N, Nagahama S 1995 Appl. Phys. Lett. 67 1868

    [2]

    Lin C C, Meijerink A, Liu R S 2016 J. Phys. Chem. Lett. 7 495

    [3]

    Pust P, Schmidt P J, Schnick W 2015 Nat. Mater. 14 454

    [4]

    Li S, Xie R J, Takeda T, Hirosaki N 2018 ECS J. Solid State SC 7 R3064

    [5]

    Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891

    [6]

    Yoshimura K, Fukunaga H, Izumi M, Takahashi K, Xie R J, Hirosaki N 2017 Jpn. J. Appl. Phys. 56 041701

    [7]

    Meyer J, Tappe F 2015 Adv. Opt. Mater. 3 424

    [8]

    Chen D, Zhou Y, Zhong J 2016 RSC Adv. 6 86285

    [9]

    Judd B R 1966 J. Chem. Phys. 44 839

    [10]

    Li L, Chang W, Chen W, Feng Z, Zhao C, Jiang P, Wang Y, Zhou X, Suchocki A 2017 Ceram. Int. 43 2720

    [11]

    Sharits A R, Khoury J F, Woodward P M 2016 Inorg. Chem. 55 12383

    [12]

    Liu Q, Wang L, Huang W, Li X, Yu M, Zhang Q 2018 Ceram. Int. 44 1662

    [13]

    Li X, Liu Q, Huang W, Chen S, Wang L, Yu M, Zhang Q 2018 Ceram. Int. 44 1909

    [14]

    Zhong J S, Gao H B, Yuan Y J, Chen L F, Chen D Q, Ji Z G 2018 J. Alloys Compd. 735 2303

    [15]

    Yin X, Wang Y, Huang F, Xia Y, Wan D, Yao J 2011 J. Solid State Chem. 184 3324

    [16]

    Fu A, Guan A, Gao F, Zhang X, Zhou L, Meng Y, Pan H 2017 Opt. Laser Technol. 96 43

    [17]

    Yin X, Yao J, Wang Y, Zhao C, Huang F 2012 J. Lumin. 132 1701

    [18]

    Zhang L, Sun B, Shao C, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 17305

    [19]

    Sivakumar V, Varadaraju U V 2008 J. Solid State Chem. 181 3344

    [20]

    Li X, Li X, Wang X, Tong L, Cheng L, Sun J, Zhang J, Xu S, Chen B 2017 J. Mater. Sci. 52 935

    [21]

    Sun H, Zhang Q, Wang X, Zhang T 2014 Mater. Lett. 131 164

    [22]

    Liu Q, Wang L, Huang W, Zhang L, Yu M, Zhang Q 2017 J. Alloys Compd. 717 156

    [23]

    Li Q, Zhang L, Zhen F, Wei S, Bu W, Yao Q, Jiang Z, Chen H 2018 Ceram. Int. 44 15565

    [24]

    Jiao M, Yang C, Liu M, Xu Q, Yu Y, You H 2017 Opt. Mater. Express 7 2660

    [25]

    Liang Y, Noh H M, Ran W, Park S H, Choi B C, Jeong J H, Kim K H 2017 J. Alloys Compd. 716 56

    [26]

    Sletnes M, Lindgren M, Valmalette J C, Wagner N P, Grande T, Einarsrud M A 2016 J. Solid State Chem. 237 72

    [27]

    Yu R, Wang C, Chen J, Wu Y, Li H, Ma H 2014 ECS J. Solid State SC 3 R33

    [28]

    Nguyen H, Kim S, Yeo I, Mho S 2012 J. Electrochem. Soc. 159 J54

    [29]

    López M L, Alvarez I, Gaitán M, Jerez A, Pico C, Veiga M L 1993 Solid State Ionics 63–65 599

    [30]

    Amrithakrishnan B, Subodh G 2017 Mater. Res. Bull. 93 177

    [31]

    Park J H, Woodward P M 2000 Int. J. Inorg. Mater. 2 153

    [32]

    Korotkov A S, Atuchin V V 2010 J. Phys. Chem. Solids 71 958

    [33]

    Judd B R 1962 Phys. Rev. 127 750

    [34]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [35]

    Werts M H V, Jukes R T F, Verhoeven J W 2002 Phys. Chem. Chem. Phys. 4 1542

    [36]

    Tanner P A 2013 Chem. Soc. Rev. 42 5090

    [37]

    Wiglusz R J, Pazik R, Lukowiak A, Strek W 2011 Inorg. Chem. 50 1321

    [38]

    Jørgensen C K, Reisfeld R 1983 J. Less-Comm. Met. 93 107

    [39]

    Blasse G 1968 Phys. Lett. A 28 444

    [40]

    van Uitert L G 1967 J. Electrochem. Soc. 114 1048

    [41]

    Riseberg L A, Moos H W 1968 Phys. Rev. 174 429

    [42]

    Fonger W H, Struck C W 1970 J. Chem. Phys. 52 6364

    [43]

    Liu Q, Li X, Zhang B, Wang L, Zhang Q, Zhang L 2016 Ceram. Int. 42 15294

    [44]

    Liang J, Zhao S, Yuan X, Li Z 2018 Opt. Laser Technol. 101 451

  • [1] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [2] 吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺. 近紫外宽带激发LED用红色荧光粉(Gd1-xEux)6(Te1-yMoy)O12的制备与性能. 物理学报, 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [3] 孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖. BaY2ZnO5:Tm3+/Yb3+荧光粉的试验优化设计合成及发光性质研究. 物理学报, 2017, 66(10): 100201. doi: 10.7498/aps.66.100201
    [4] 赵聪, 孟庆裕, 孙文军. Eu3+掺杂CaMoO4微米荧光粉发光性质的研究. 物理学报, 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [5] 谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉. 水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响. 物理学报, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [6] 钟红梅, 刘茜, 周遥, 庄建东, 周虎. AlON:Ce3+荧光粉的制备及光谱研究. 物理学报, 2013, 62(8): 087804. doi: 10.7498/aps.62.087804
    [7] 刘红利, 郝玉英, 许并社. 白光发光二级管用红色荧光粉LiSrBO3: Eu3+的制备与发光性能研究. 物理学报, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [8] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递. 物理学报, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [9] 李海玲, 王银海, 张万鑫, 王显盛, 赵慧. Eu3+掺杂CaO的合成与红色长余辉发光性能研究. 物理学报, 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [10] 王倩, 慈志鹏, 王育华, 朱革, 温艳, 刘碧桃, 阙美丹. Mg5SnB2O10:Eu3+, Bi3+—-一种用于发光二极管的红色荧光粉的制备及其发光性能的研究. 物理学报, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [11] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究. 物理学报, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [12] 冯晓辉, 孟庆裕, 孙江亭, 吕树臣, 孙立男. Eu3+掺杂Gd2W2O9和Gd2(WO4)3纳米荧光粉发光性质研究. 物理学报, 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [13] 周亚训, 戴世勋, 周灵, 徐铁峰, 聂秋华, 黄尚廉. 掺铒碲酸盐玻璃中的协作上转换能量转移. 物理学报, 2009, 58(2): 1261-1268. doi: 10.7498/aps.58.1261
    [14] 延凤平, 王琳, 魏淮, 傅永军, 简伟, 郑凯, 毛向桥, 李坚, 刘利松, 彭健, 简水生. 石英基掺Yb3+光纤中Al3+共掺特性的研究. 物理学报, 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [15] 韩 琳, 宋 峰, 邹昌光, 苏 静, 闫立华, 田建国, 张光寅. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究. 物理学报, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [16] 王晓丹, 赵志伟, 徐晓东, 宋平新, 姜本学, 徐 军, 邓佩珍. 不同Yb掺杂量的Yb:Y3Al5O12晶体的光谱分析. 物理学报, 2006, 55(8): 4358-4364. doi: 10.7498/aps.55.4358
    [17] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究. 物理学报, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [18] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [19] 彭洪尚, 宋宏伟, 陈宝玖, 王绩伟, 吕少哲, 孔祥贵, 李殿超. 变温下Y2O3∶Eu3+纳米晶的荧光光谱和动力学过程. 物理学报, 2002, 51(12): 2875-2880. doi: 10.7498/aps.51.2875
    [20] 裴慧元, 方家熊. Cd0.96Zn0.04Te低温Raman光谱中荧光背景的猝灭现象. 物理学报, 2001, 50(5): 968-972. doi: 10.7498/aps.50.968
计量
  • 文章访问数:  6470
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-13
  • 修回日期:  2018-10-21
  • 刊出日期:  2019-12-20

/

返回文章
返回