搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

s夸克物质的边界效应和K介子自相似结构对QGP--强子相变的影响

戴婷婷 程鸾 丁慧强 张卫宁 王恩科

引用本文:
Citation:

s夸克物质的边界效应和K介子自相似结构对QGP--强子相变的影响

戴婷婷, 程鸾, 丁慧强, 张卫宁, 王恩科

The Boundary Effect of s Quark Matter and Self-similarity Structure Influence of K Meson on QGP--hadron Phase Transition

Dai Ting-Ting, Ding Hui-Qiang, Cheng Luan, Zhang Wei-Ning, Wang En-Ke
PDF
导出引用
  • 本文聚焦于小尺度$s$夸克物质的边界效应和强子气体中强子的自相似结构对QGP--强子相相变的影响. 本文采用多级反射展开方法研究包含$s$夸克的QGP热滴的边界效应. 通过计算发现在边界效应的影响下, 小尺度$s$夸克物质相较于热力学极限条件下具有更低的能量密度, 熵密度和压强. 在强子相中, $K$介子在集体流, 量子关联和强相互作用的影响下, 与相邻$\pi$介子形成两体自相似结构. 通过两体分形模型对$K$介子的自相似结构影响计算得出, $K$介子的自相似结构存在于碰撞系统中, 导致$K$介子的能量密度, 熵密度和压强增大. 本研究预测在低能碰撞HIAF能区, $K$介子的自相似结构影响因子 $q_{1} = 1.042$. 考虑边界效应和$K$, $\pi$介子的自相似结构对相变的影响, 计算发现$s$夸克物质在边界效应与自相似结构的影响下相变温度均有所升高. 若$s$夸克物质的边界弯曲程度较大, 则相变温度的升幅相较于自相似结构的影响更明显.
    We investigate the boundary effect of small-scale $s$ quark matter, and the self-similarity structure influence of strange hadrons in the hadron gas on QGP--hadron phase transition. In this study, the multiple reflection expansion method is employed to investigate the boundary effect of QGP droplets containing $s$ quarks. The calculation reveals that under the influence of boundary effect, small-scale $s$ quark matter exhibits lower energy density, entropy density, and pressure. In hadron phase, there is the two-body self-similarity structure between $K$ meson and neighboring $\pi$ mesons under the influence of collective flow, quantum correlations, and strong interactions. By applying Two-Body Fractal Model to study the self-similarity structure of the $K$ meson in meson and quark aspect, it is found that the self-similarity structure of the $K$ meson exists in hadron phase, leading to an increase in the energy density, entropy density, and pressure of the $K$ meson. With the influence of self-similarity structure, it is found that the derived transverse momentum spectrum of $K$ meson has a good agreement with experimental data (Fig. (a)). This study predicts that in the HIAF energy region, the self-similarity structure factor of $K$ meson $q_{1}$ approaches $1.042$. Under the influence of boundary effect and self-similarity structure of $K$ and $\pi$ mesons, it shows that the phase transition temperature of $s$ quark matter increases (Fig. (b)). And if the boundary of $s$ quark matter curves more, the increase of phase transition temperature becomes more pronounced compared to the influence of self-similarity structure.
  • [1]

    Srivastava P K, Tiwari S K, Singh C P 2010 Phys. Rev. D 82 014023

    [2]

    Singh C 1993 Phys. Rep. 236 147

    [3]

    Satz H 2000 Rep. Prog. Phys. 63 1511

    [4]

    Back B, Baker M, Ballintijn M, et al. 2005 Nucl. Phys. A 757 28

    [5]

    STAR Collaboration 2005 Nucl. Phys. A 757 102

    [6]

    Arsene I, Bearden I, Beavis D, et al. 2005 Nucl. Phys. A 757 1

    [7]

    Karthein J M, Mroczek D, Acuna A R N, et al. 2021 Eur. Phys. J. Plus 136 621

    [8]

    Mohanty B 2009 Nucl. Phys. A 830 899c

    [9]

    An X, Bluhm M, Du L, et al. 2022 Nucl. Phys. A 1017 122343

    [10]

    Odyniec G 2019 PoS CORFU2018 151

    [11]

    Bzdak A, Esumi S, Koch V, otehrs 2020 Phys. Rep. 853 1

    [12]

    Dai T, Ding H, Cheng L, Zhang W, Wang E 2024 arXiv:2411.068219

    [13]

    Deur A, Brodsky S J, de Téramond G F 2016 Prog. Part. Nucl. Phys. 90 1

    [14]

    Niida T, Miake Y 2021 AAPPS Bull. 31 12

    [15]

    Raghunath S 2019 AAPPS Bull. 29 16

    [16]

    Loizides C 2016 Nucl. Phys. A 956 200

    [17]

    Shneider M N, Pekker M 2019 arXiv:1901.04329

    [18]

    Wong C Y, Zhang W N 2007 Int. J. Mod. Phys. E 16 3271

    [19]

    Gustafsson H A, Gutbrod H H, Kolb B, et al. 1984 Phys. Rev. Lett. 52 1590

    [20]

    Danielewicz P, Odyniec G 1985 Phys. Lett. B 157 146

    [21]

    Wiranata A, Koch V, Prakash M, Wang X N 2014 J. Phys.: Conf. Ser. 509 012049

    [22]

    Zachariasen F, Zemach C 1962 Phys. Rev. 128 849

    [23]

    Rafelski J 1982 Phys. Rep 88 331

    [24]

    Koch P, Müller B, Rafelski J 1986 Phys. Rep. 142 167

    [25]

    Greiner C, Koch P, Stöcker H 1987 Phys. Rev. Lett. 58 1825

    [26]

    Greiner C, Rischke D H, Stöcker H, Koch P 1988 Phys. Rev. D 38 2797

    [27]

    Greiner C, Stöcker H 1991 Phys. Rev. D 44 3517

    [28]

    Mønster D 1996 Strangelets: Effects of Finite Size and Exact Color Singletness. Ph.D. Dissertation, Aarhus University, Aarhus,Denmark

    [29]

    Nordin F 2011 Quark-Gluon-Plasma at Brookhaven and CERN. Bachelor thesis, Lund University,Lund, Sweden

    [30]

    STAR Collaboration 2020 Phys. Rev. C 102 034909

    [31]

    Moreau P, Soloveva O, Oliva L, Song T, Cassing W, Bratkovskaya E 2019 Phys. Rev. C 100 014911

    [32]

    Shen C, Alzhrani S 2020 Phys. Rev. C 102 014909

    [33]

    Albacete J L, Guerrero-Rodríguez P, Marquet C 2019 J. High Energy Phys. 2019 73

    [34]

    Grönqvist H 2016 Fluctuations in High-Energy Particle Collisions. Theses, Université Paris Saclay(COmUE)

    [35]

    Chodos A, Jaffe R L, Johnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471

    [36]

    Ramanathan R, Gupta K K, Jha A K, Singh S S 2007 Pramana 68 757

    [37]

    Madsen J 1993 Phys. Rev. Lett. 70 391

    [38]

    Madsen J 1994 Phys. Rev. D 50 3328

    [39]

    Balian R, Bloch C 1970 Annals of Physics 60 401

    [40]

    Patra B K, Singh C P 1996 Phys. Rev. D 54 3551

    [41]

    Song G, Enke W, Jiarong L 1992 Phys. Rev. D 46 3211

    [42]

    Bazavov A, Ding H T, Hegde P, et al. 2019 Phys. Lett. B 795 15

    [43]

    Bellwied R, Borsányi S, Fodor Z, Günther J, Katz S, Ratti C, Szabo K 2015 Phys. Lett. B 751 559

    [44]

    Hagedorn R 1971 Thermodynamics of strong interactions. Tech. rep., CERN

    [45]

    Wong C Y 2002 Phys. Rev. C 65 034902

    [46]

    Pathria R, Beale P D 2022 Formulation of quantum statistics. Fourth edition edn. (Lodon: Elseviser),pp 117–154

    [47]

    Musakhanov M 2017 EPJ Web Conf. 137 03013

    [48]

    Mandelbrot B B 1967 Science 156 636

    [49]

    Mandelbrot B B 1986 Self-affne fractal sets, I: The basic fractal dimensions (Amsterdam: Elsevier),pp 3–15

    [50]

    Tsallis C 1988 J. Stat. Phys 52 479

    [51]

    Abe S, Okamoto Y 2001 Nonextensive statistical mechanics and its applications, vol. 560 (Berlin: Springer Science & Business Media), pp 5–6

    [52]

    Ding H Q, Dai T T, Cheng L, Zhang W N, Wang E K 2023 Acta Phys. Sin. 72 192501

    [53]

    Ding H, Cheng L, Dai T, Wang E, Zhang W N 2023 Entropy 25 1655

    [54]

    Crater H W, Yoon J H, Wong C Y 2009 Phys. Rev. D 79 264

    [55]

    Tsallis C 2009 Introduction to nonextensive statistical mechanics: approaching a complex world, vol. 1 (New York: Springer), pp 47–129

    [56]

    Ubriaco M R 1999 Phys. Rev. E 60 165

    [57]

    Büyükkiliç F, Demirham D 1993 Phys. Lett. A 181 24

    [58]

    Feng X, Jin L, Riberdy M J 2022 Phys. Rev. Lett. 128 052003

    [59]

    Wang G, Liang J, Draper T, Liu K F, Yang Y B 2021 Phys. Rev. D 104 074502

    [60]

    Rajagopal A, Mendes R, Lenzi E 1998 Phys. Rev. Lett. 80 3907

    [61]

    Wang Q A 2002 Chaos, Solitons Fractals 14 765

    [62]

    Abe S 2001 Phys. Rev. E 63 061105

    [63]

    STAR Collaboration 2017 Phys. Rev. C 96 044904

    [64]

    Fu W J, Pawlowski J M, Rennecke F 2020 Phys. Rev. D 101 054032

    [65]

    Gao F, Pawlowski J M 2021 Phys. Lett. B 820 136584

    [66]

    Gunkel P J, Fischer C S 2021 Phys. Rev. D 104 054022

  • [1] 李阳, 张艳红, 盛亮, 张美, 姚志明, 段宝军, 赵吉祯, 郭泉, 严维鹏, 李国光, 胡佳琦, 李豪卿, 李郎郎. 不同厚度ST401中子能谱响应测量与分析. 物理学报, doi: 10.7498/aps.73.20241198
    [2] 周淑英, 沈婉萍, 毛鸿. 强子夸克相变表面张力解析求解. 物理学报, doi: 10.7498/aps.71.20220659
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, doi: 10.7498/aps.70.20201643
    [4] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [5] 袁都奇. 囚禁有限unitary费米气体的热力学性质. 物理学报, doi: 10.7498/aps.65.180302
    [6] 李洪云, 尹妍妍, 王青, 王立飞. 平行电磁场中里德堡氢原子的自相似结构研究. 物理学报, doi: 10.7498/aps.64.180502
    [7] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 物理学报, doi: 10.7498/aps.63.170501
    [8] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究. 物理学报, doi: 10.7498/aps.62.080505
    [9] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测. 物理学报, doi: 10.7498/aps.59.6022
    [10] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造. 物理学报, doi: 10.7498/aps.58.7088
    [11] 赖小明, 卞保民, 杨 玲, 杨 娟, 卞 牛, 李振华, 贺安之. 非奇异宇宙的理想气体自相似模型. 物理学报, doi: 10.7498/aps.57.7955
    [12] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析. 物理学报, doi: 10.7498/aps.57.4978
    [13] 赖祥军, 罗志全, 刘晶晶, 刘宏林. 超新星核中的夸克相变及夸克质量效应. 物理学报, doi: 10.7498/aps.57.1535
    [14] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响. 物理学报, doi: 10.7498/aps.56.437
    [15] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性. 物理学报, doi: 10.7498/aps.55.6667
    [16] 戴子高, 陆埮, 彭秋和. 中子星内部非奇异-奇异夸克物质的相变. 物理学报, doi: 10.7498/aps.42.1210
    [17] 吴建斌, 王志成. Jahn-Teller效应和LiNbO3的结构相变(Ⅲ). 物理学报, doi: 10.7498/aps.40.1320
    [18] 钟锡华, 周岳明, 朱亚芬. 自相似时间信息的谱研究. 物理学报, doi: 10.7498/aps.40.1934
    [19] 钟锡华. 自相似结构的谱函数. 物理学报, doi: 10.7498/aps.39.59
    [20] 张珉, 陶瑞宝, 周世勋. 具有自相似结构的非均匀复合媒质质量分布的标度指数. 物理学报, doi: 10.7498/aps.37.1987
计量
  • 文章访问数:  131
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-02

/

返回文章
返回