搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Boosted-Gold算法的γ能谱反演分析

张双 贺三军 廖峰 罗万 周芷千 高波 刘丽艳 赵修良

引用本文:
Citation:

基于Boosted-Gold算法的γ能谱反演分析

张双, 贺三军, 廖峰, 罗万, 周芷千, 高波, 刘丽艳, 赵修良

Analysis of the unfolded γ energy spectrum based on Boosted-Gold algorithm

Zhang Shuang, He San-Jun, Liao Feng, Luo Wan, Zhou Zhi-Qian, Gao Bo, Liu Li-Yan, Zhao Xiu-Liang
PDF
HTML
导出引用
  • 为了利用低能量分辨率探测器γ能谱分析获取未知放射性核素的特征信息, 提高γ能谱中重峰及弱峰分析的准确性和有效性, 本文开展了基于Boosted-Gold算法的NaI(Tl)探测器γ能谱分析研究. 采用MCNPX建立NaI(Tl)探测器模拟模型,获得了维度201×200的探测器响应矩阵. 基于Boosted-Gold算法开发了γ能谱反演程序. 实验测量了γ源22Na, 133Ba和152Eu的探测器响应能谱, 并以不同γ射线能量、不同能差$(\Delta E)$、不同相对强度为条件构建了3组低分辨率模拟γ能谱, 结合响应矩阵及反演程序对实测γ能谱和模拟γ能谱进行反演. 以IAEA数据库核素标准特征信息对反演结果进行分析. 结果表明: Boosted-Gold算法对实测γ能谱特征能量反演误差最大为2.17% (133Ba源0.276MeV), 反演强度与标准强度最大差为0.197(152Eu源1.408 MeV). 对模拟γ能谱核素特征能量均可准确分析, 反演强度与标准强度差值保持在0.01以内; 当增强系数p≤14时, Boosted-Gold算法有利于γ放射性核素的定量分析, 对于相对强度大于10%的γ射线, 该算法具有更好的分析准确性.
    To obtain the characteristic information of unknown radionuclides by analyzing the γ-energy spectrum of a low-resolution detector, and to improve the accuracy and validity of the analysis of overlapping and weak peaks in the γ-energy spectrum, in this paper we analyze the γ-energy spectrum of NaI(Tl) detectors based on the Boosted-Gold algorithm. A simulation model of NaI(TI) detector is established by using MCNPX, and a detector response matrix with dimension 201 × 200 is obtained. The γ-energy spectrum unfolding program is developed based on the Boosted-Gold algorithm. The detector response spectra of the γ radioactive sources 22Na, 133Ba, and 152Eu are measured. Three groups of low-resolution γ spectra are constructed with different γ-ray energy, different energy differences ($ \Delta E $) and different relative intensities by simulation. Combining the response matrix and the unfolding procedures, the measured and simulated γ energy spectra are unfolded. The unfolding results are analyzed with the nuclide standard characteristics information from the IAEA database. The results show that the maximum unfolding error of the characteristic energy of the measured γ-energy spectrum is 2.17% (0.276 MeV for 133Ba source) by the Boosted-Gold algorithm, and the maximum deviation between the unfolded intensity and the standard intensity is 0.197 (1.408 MeV for 152Eu source). For the simulated γ energy spectrum, the characteristic energy of nuclide can be accurately analyzed, and the deviation between unfolded intensity and standard intensity maintains 0.01. When the enhancement factor p ≤ 14, the Boosted-Gold algorithm is beneficial to the quantitative analysis of γ-radionuclides. For the relative intensity of γ-rays greater than 10%, this algorithm has better analysis accuracy.
      通信作者: 赵修良, zhaoxiul@usc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12005098)、湖南省教育厅科学研究项目(批准号: 19A431)和湖南省教育厅研究生科研创新项目(批准号: CX20210945)资助的课题.
      Corresponding author: Zhao Xiu-Liang, zhaoxiul@usc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005098), the Scientific Research Program of Education Department of Hunan Province, China (Grant No. 19A431), and the Postgraduate Innovation Program of Education Department of Hunan Province, China (Grant No. CX20210945).
    [1]

    Li F, Cheng Z Y, Tian C S, Xiao H F, Zhang M, Ge L Q 2020 Appl. Spectrosc. Rev. 56 255

    [2]

    陈晔 2021 博士学位论文 (北京: 军事科学院)

    Chen Y 2021 Ph. D. Dissertation (Beijing: Academy of Military Sciences) (in Chinese)

    [3]

    Rahman M S, Cho G, Kang B S 2009 Radiat. Prot. Dosim. 135 203Google Scholar

    [4]

    Alizadeh D, Ashrafi S 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 1Google Scholar

    [5]

    Demir N, Kuluöztürk Z N 2021 Nucl. Eng. Technol. 53 3759Google Scholar

    [6]

    Milbrath B D, Choate B J, Fast J E, Hensley W K, Kouzes R T, Schweppe J E 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 572 774Google Scholar

    [7]

    Baré J, Tondeur F 2011 Appl. Radiat. Isot. 69 1121Google Scholar

    [8]

    Morháč M, Matoušek V 2009 Digital Signal Proces. 19 372Google Scholar

    [9]

    Kwan E, Wu C Y, Haight R C, Lee H Y, Bredeweg T A, Chyzh A, Devlin M, Fotiades N, Gostic J M, Henderson R A, Jandel M, Laptev A, Nelson R O, O’Donnell J M, Perdue B A, Taddeucci T N, Ullmann J L, Wender S A 2014 Nucl. Data Sheets 119 221Google Scholar

    [10]

    Meng L J, Ramsden D 2000 IEEE Trans. Nucl. Sci. 47 1329

    [11]

    Shi R, Tuo X G, Li H L, Xu Y Y, Shi F R, Yang J B, Luo Y 2018 Nucl. Sci. Tech. 29 10Google Scholar

    [12]

    Li L, Tuo X G, Liu M Z, Wang J 2014 Nucl. Sci. Tech. 25 050202

    [13]

    Wachtmeister S, Csillag S 2011 Ultramicroscopy 111 79Google Scholar

    [14]

    Zhou R J, Zhong G Q, Hu L Q, Tardocchi M, Rigamonti D, Giacomelli L, Nocente M, Gorini G, Fan T S, Zhang Y M, Hu Z M, Xiao M, Li K, Zhang Y K, Hong B, Zhang Y, Lin S Y, Zhang J Z 2019 Rev. Sci. Instrum. 90 123510Google Scholar

    [15]

    Morháč M, Matoušek V 2011 J. Comput. Appl. Math. 235 1629Google Scholar

    [16]

    Jandel M, Morháč M, Kliman J, Krupa L, Matoušek V, Hamilton J H, Ramayya A V 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 516 172Google Scholar

    [17]

    He J F, Yang Y Z, Qu J H, Wu Q F, Xiao H L, Yu C C 2016 Nucl. Sci. Tech. 27 111Google Scholar

    [18]

    赵日, 刘立业, 曹勤剑 2019 原子能科学技术 53 1495Google Scholar

    Zhao R, Liu L Y, Cao Q J 2019 At. Energy Sci. Technol. 53 1495Google Scholar

    [19]

    Zhang S J, Liu C Q, Yang X, Huang C, Xie Q, Hu Z J, Hu Z M, Han C, Bai X H, Huo D Y, Wu K, Wang J R, Zhang Y, Wei Z, Yao Z E 2021 Nucl. Instrum. Methods Phys. Res., Sect. A 1006 165407Google Scholar

    [20]

    艾宪芸, 魏义祥, 肖无云 2006 清华大学学报(自然科学版) 46 821Google Scholar

    Ai X Y, Wei Y X, Xiao W Y 2006 J. Tsinghua. Univ. (Sci. & Tech.) 46 821Google Scholar

    [21]

    Khilkevitch E M, Shevelev A E, Chugunov I N, Naidenov V O, Gin D B, Doinikov D N 2013 Tech. Phys. Lett. 39 63Google Scholar

    [22]

    Morháč M, Hlaváč S, Veselský M, Matoušek V 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 539Google Scholar

    [23]

    吴和喜, 袁新宇, 刘庆成, 刘玉娟, 杨磊 2012 原子能科学技术 46 1142

    Wu H X, Yuan X Y, Liu Q C, Liu Y J, Yang L 2012 At. Energy Sci. Technol. 46 1142

    [24]

    Salgado C M, Brandão L E B, Schirru R, Pereira C M N A, Conti C C 2012 Prog. Nucl. Energy 59 19Google Scholar

    [25]

    陈伟, 苏川英, 冯天成, 刘文彪, 田自宁 2018 核技术 41 70

    Cheng W, Su C Y, Feng T C, Liu W B, Tian Z N 2018 Nucl. Tech. 41 70

  • 图 1  Boosted-Gold算法计算过程

    Fig. 1.  The calculation process of Boosted-Gold Algorithm.

    图 2  实验平台电子学框图

    Fig. 2.  The electronics block diagram of the experimental platform.

    图 3  FJ374型NaI(Tl)探测器能量刻度

    Fig. 3.  Energy calibration of FJ374 NaI(Tl) detector.

    图 4  能量(Eγ)与半高宽(FWHM)对应关系

    Fig. 4.  The correspondence between energy (Eγ) and half-maximum width (FWHM).

    图 5  FJ374型NaI(Tl)探测器仿真模型

    Fig. 5.  The simulation model of FJ374 NaI(Tl) detector.

    图 6  NaI(TI)探测器响应函数

    Fig. 6.  Response matrix for the NaI (TI) detector.

    图 7  实测γ能谱与反演能谱的比较 (a) 22Naγ源能谱反演前后结果对比; (b)133Baγ源能谱反演前后结果对比; (c)152Eu γ源能谱反演前后结果对比

    Fig. 7.  The comparison between the measured γ energy spectra and the unfolded energy spectrum: (a) Comparison of the results before and after the unfolded of the energy spectrum of the 22Na γ source; (b) comparison of the results before and after the unfolded of the energy spectrum of the 133Baγ source; (c) comparison of the results before and after the algorithm unfolded of the energy spectrum of the 152Eu γ source.

    图 8  模拟γ能谱反演前后结果对比 (a1) 4种能量γ射线模拟谱; (a2) 4种能量γ射线模拟谱反演前后结果对比; (b1)6种能量γ射线模拟谱; (b2) 6种能量γ射线模拟谱反演前后结果对比; (c1) 8种能量γ射线模拟谱; (c2) 8种能量γ射线模拟谱反演前后结果对比

    Fig. 8.  The comparison of between the results before and after the unfolding of the simulated γ energy spectrum: (a1) The simulation spectrum of gamma-rays of 4 energies; (a2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 4 energies; (b1) the simulation spectrum of gamma-rays of 6 energies; (b2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 6 energies; (c1) the simulation spectrum of gamma-rays of 8 energies; (c2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 8 energies.

    图 9  不同p值下标准相对强度数据与反演数据的对比

    Fig. 9.  The comparison of the standard relative intensity data and the unfolded data at different p-values.

    表 1  实验谱与反演谱结果分析对比

    Table 1.  Analysis and comparison of the experimental spectrum and the unfolded spectrum results.

    定性分析定量分析
    标准能量/MeV反演能量/MeV误差/%标准谱
    强度比
    反演谱
    强度比
    偏差
    22Na0.5110.510.2110
    1.2751.291.180.5560.4380.118
    133Ba0.0810.081.230.550.449–0.101
    0.2760.272.170.1150.1230.008
    0.3030.300.990.2950.3190.024
    0.3560.351.69110
    0.3840.381.040.1440.1620.018
    152Eu0.3440.341.16110
    0.7790.771.150.4860.4950.009
    0.9640.960.410.5460.560.014
    1.0851.090.460.380.4020.022
    1.1121.120.720.5140.461–0.053
    1.4081.40.570.7850.588–0.197
    下载: 导出CSV

    表 2  模拟谱与反演谱结果对比

    Table 2.  Comparison of the simulated spectrum and the unfolded spectrum results.

    定性分析 定量分析
    标准能量/MeV反演能量/MeV标准谱强度比反演谱强度比偏差
    谱10.430.430.30.3020.002
    0.470.47110
    0.50.50.30.3070.007
    0.540.540.40.40
    谱20.670.670.40.4030.003
    0.710.7110.996–0.004
    0.760.760.40.397–0.003
    0.810.810.60.598–0.002
    1.031.03110
    1.081.080.60.6020.002
    谱30.630.630.50.49–0.01
    0.670.67110
    0.720.720.50.495–0.005
    0.770.770.50.495–0.005
    1.281.280.750.744–0.006
    1.341.340.50.494–0.006
    1.391.390.750.7520.002
    1.451.450.50.486–0.014
    下载: 导出CSV
  • [1]

    Li F, Cheng Z Y, Tian C S, Xiao H F, Zhang M, Ge L Q 2020 Appl. Spectrosc. Rev. 56 255

    [2]

    陈晔 2021 博士学位论文 (北京: 军事科学院)

    Chen Y 2021 Ph. D. Dissertation (Beijing: Academy of Military Sciences) (in Chinese)

    [3]

    Rahman M S, Cho G, Kang B S 2009 Radiat. Prot. Dosim. 135 203Google Scholar

    [4]

    Alizadeh D, Ashrafi S 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 1Google Scholar

    [5]

    Demir N, Kuluöztürk Z N 2021 Nucl. Eng. Technol. 53 3759Google Scholar

    [6]

    Milbrath B D, Choate B J, Fast J E, Hensley W K, Kouzes R T, Schweppe J E 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 572 774Google Scholar

    [7]

    Baré J, Tondeur F 2011 Appl. Radiat. Isot. 69 1121Google Scholar

    [8]

    Morháč M, Matoušek V 2009 Digital Signal Proces. 19 372Google Scholar

    [9]

    Kwan E, Wu C Y, Haight R C, Lee H Y, Bredeweg T A, Chyzh A, Devlin M, Fotiades N, Gostic J M, Henderson R A, Jandel M, Laptev A, Nelson R O, O’Donnell J M, Perdue B A, Taddeucci T N, Ullmann J L, Wender S A 2014 Nucl. Data Sheets 119 221Google Scholar

    [10]

    Meng L J, Ramsden D 2000 IEEE Trans. Nucl. Sci. 47 1329

    [11]

    Shi R, Tuo X G, Li H L, Xu Y Y, Shi F R, Yang J B, Luo Y 2018 Nucl. Sci. Tech. 29 10Google Scholar

    [12]

    Li L, Tuo X G, Liu M Z, Wang J 2014 Nucl. Sci. Tech. 25 050202

    [13]

    Wachtmeister S, Csillag S 2011 Ultramicroscopy 111 79Google Scholar

    [14]

    Zhou R J, Zhong G Q, Hu L Q, Tardocchi M, Rigamonti D, Giacomelli L, Nocente M, Gorini G, Fan T S, Zhang Y M, Hu Z M, Xiao M, Li K, Zhang Y K, Hong B, Zhang Y, Lin S Y, Zhang J Z 2019 Rev. Sci. Instrum. 90 123510Google Scholar

    [15]

    Morháč M, Matoušek V 2011 J. Comput. Appl. Math. 235 1629Google Scholar

    [16]

    Jandel M, Morháč M, Kliman J, Krupa L, Matoušek V, Hamilton J H, Ramayya A V 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 516 172Google Scholar

    [17]

    He J F, Yang Y Z, Qu J H, Wu Q F, Xiao H L, Yu C C 2016 Nucl. Sci. Tech. 27 111Google Scholar

    [18]

    赵日, 刘立业, 曹勤剑 2019 原子能科学技术 53 1495Google Scholar

    Zhao R, Liu L Y, Cao Q J 2019 At. Energy Sci. Technol. 53 1495Google Scholar

    [19]

    Zhang S J, Liu C Q, Yang X, Huang C, Xie Q, Hu Z J, Hu Z M, Han C, Bai X H, Huo D Y, Wu K, Wang J R, Zhang Y, Wei Z, Yao Z E 2021 Nucl. Instrum. Methods Phys. Res., Sect. A 1006 165407Google Scholar

    [20]

    艾宪芸, 魏义祥, 肖无云 2006 清华大学学报(自然科学版) 46 821Google Scholar

    Ai X Y, Wei Y X, Xiao W Y 2006 J. Tsinghua. Univ. (Sci. & Tech.) 46 821Google Scholar

    [21]

    Khilkevitch E M, Shevelev A E, Chugunov I N, Naidenov V O, Gin D B, Doinikov D N 2013 Tech. Phys. Lett. 39 63Google Scholar

    [22]

    Morháč M, Hlaváč S, Veselský M, Matoušek V 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 539Google Scholar

    [23]

    吴和喜, 袁新宇, 刘庆成, 刘玉娟, 杨磊 2012 原子能科学技术 46 1142

    Wu H X, Yuan X Y, Liu Q C, Liu Y J, Yang L 2012 At. Energy Sci. Technol. 46 1142

    [24]

    Salgado C M, Brandão L E B, Schirru R, Pereira C M N A, Conti C C 2012 Prog. Nucl. Energy 59 19Google Scholar

    [25]

    陈伟, 苏川英, 冯天成, 刘文彪, 田自宁 2018 核技术 41 70

    Cheng W, Su C Y, Feng T C, Liu W B, Tian Z N 2018 Nucl. Tech. 41 70

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] 李潇潇, 李娟, 柏财勋, 畅晨光, 郝雄波, 文镇清, 王鹏冲, 冯玉涛. 间接型光谱成像仪相对光谱响应函数标定方法. 物理学报, 2024, 73(12): 120703. doi: 10.7498/aps.73.20240200
    [3] 李阳, 张艳红, 盛亮, 张美, 姚志明, 段宝军, 赵吉祯, 郭泉, 严维鹏, 李国光, 胡佳琦, 李豪卿, 李郎郎. 不同厚度ST401中子能谱响应测量与分析. 物理学报, 2024, 73(23): 232401. doi: 10.7498/aps.73.20241198
    [4] 程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬. 基于微结构气体探测器对单能和连续谱快中子的模拟解谱. 物理学报, 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [5] 刘俊岩, 秦雷, 宋鹏, 龚金龙, 王扬, A. Mandelis. 硅太阳能电池的调制载流子红外辐射动态响应与参数分析. 物理学报, 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [6] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究. 物理学报, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [7] 李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦. 基于焦斑空间频率全域优化的偏振匀滑设计. 物理学报, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [8] 屠小青, 周荣, 代飞, 杨天丽, 杨朝文. 使用α粒子轰击天然镱靶制备178m2Hf同质异能素及样品γ能谱分析. 物理学报, 2014, 63(16): 162303. doi: 10.7498/aps.63.162303
    [9] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫. 利用252 Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数. 物理学报, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [10] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [11] 李平, 粟敬钦, 马驰, 张锐, 景峰. 光谱色散匀滑对焦斑光强频谱的影响. 物理学报, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [12] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [13] 张海涛, 崔瑞祯, 王东生, 闫 平, 陈 刚, 柳 强. 基于Phong模式的分裂Monte Carlo模拟红外室内信道脉冲响应函数. 物理学报, 2005, 54(8): 3610-3615. doi: 10.7498/aps.54.3610
    [14] 谷 娟, 梁九卿. 施主中心量子点能谱分析. 物理学报, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [15] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [16] 程宇航, 吴一平, 陈建国, 乔学亮, 谢长生, 杨业智, 莫少波. a-C∶H(N)薄膜结构的X射线光电子能谱分析. 物理学报, 1998, 47(1): 83-88. doi: 10.7498/aps.47.83
    [17] 刘胜侠. HT-6M中性注入加热电荷交换能谱分析. 物理学报, 1996, 45(3): 449-454. doi: 10.7498/aps.45.449
    [18] 郭元恒, 陈岚峰. 超导Nb-Ge溅射膜的俄歇电子能谱及电子能谱化学分析. 物理学报, 1988, 37(7): 1196-1102. doi: 10.7498/aps.37.1196
    [19] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [20] 李方华, 樊汉节, 张培善, 王怡华. 微区X射线能谱分析技术在研究钡-稀土氟碳酸盐矿物上的应用. 物理学报, 1983, 32(4): 460-465. doi: 10.7498/aps.32.460
计量
  • 文章访问数:  5310
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-16
  • 上网日期:  2022-02-21
  • 刊出日期:  2022-05-20

/

返回文章
返回