搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双光子激发ZnSe自由载流子超快动力学研究

杨哲 张祥 肖思 何军 顾兵

引用本文:
Citation:

双光子激发ZnSe自由载流子超快动力学研究

杨哲, 张祥, 肖思, 何军, 顾兵

Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal

Yang Zhe, Zhang Xiang, Xiao Si, He Jun, Gu Bing
PDF
导出引用
  • 采用Z扫描和抽运-探测实验技术, 在波长为532 nm、脉冲宽度为41 fs的条件下测得ZnSe晶体的双光子吸收系数, 并获得了不同激发光强下的自由载流子吸收截面、电子-空穴带间复合时间和电子-声子耦合时间. 研究发现, 随着激发光强的增大, 自由载流子吸收截面减小, 复合时间变短. 当激发光强增大导致载流子浓度大于1018 cm-3时, 抽运-探测信号出现明显改变, 原因归结为强光场激发导致样品在短时间内带隙变窄和电子-空穴等离子体的形成.
    Semiconductor materials exhibiting large optical nonlinearities and ultrafast nonlinear response have received extensive attention because of their potential applications in optical limiting, all-optical devices, optical telecommunication, and so on. As a direct-gap II-VI bulk semiconductor, ZnSe crystal has been exploited as the nonlinear optical devices in the regimes of nanoseconds and picoseconds during the past years. Owing to today's fast advance of laser sources with ultrashort femtosecond pulse duration, it is possible to investigate the ultrafast optical nonlinearities in the bulk ZnSe crystal. In this paper, we experimentally investigate the ultrafast dynamics of free-carriers induced by twophoton excitation in the bulk ZnSe crystal. By performing open-aperture Z-scan experiments with 41 fs laser pulses at the wavelength of 532 nm under the condition of low excitation intensity, the two-photon absorption coefficient is measured. As the excitation intensity exceeds a critical value, the interplay between third- and fifth-order nonlinear absorption processes is observed. To evaluate the ultrafast dynamics of free carriers, we have carried out femtosecond time-resolved degenerate pump-probe measurements with the same laser system used for Z-scan experiments in different levels of pump intensities. It is shown that the transient absorption signals peaked at the zero delay is a linearly increasing function of pump intensity, indicating that the observed instantaneous nonlinear absorption is dominated by the interband two-photon absorption process. At moderate irradiance, the transient absorption signals obviously indicate two components, arising from the two-photon absorption-induced free-carrier absorption, which is equivalent to the fifth-order nonlinear absorption process. Under the excitation of relatively high pump intensity, the magnitude of the reduction of free-carrier absorption signal becomes faster, suggesting that the ZnSe crystal exhibits a new effect and causes a transmittance change of the probe light. The presumable reasons are as follows: intense irradiances will result in the increase of carrier concentration and the rise of the lattice temperature as well as the narrowing of the band gap in the ZnSe crystal, which accelerates the electron-hole interband recombination process. Accordingly, the electron-hole recombination time decreases. Furthermore, when the carrier concentration is larger than 1018 cm-3, the occurrence of the electron-hole plasma is significant. At the same time, the enhancement of the scattering among the carriers results in the reduction of the free carrier absorption cross section. In summary, it is found that the free-carrier absorption cross section decreases whereas the electron-hole recombination time becomes shorter in ZnSe crystal as the excitation intensity increases, owing to both the narrowing of band gap and the occurrence of electron-hole plasma.
      通信作者: 何军, junhe@csu.edu.cn;gubing@seu.edu.cn ; 顾兵, junhe@csu.edu.cn;gubing@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61222406, 11174371)、湖南省自然科学基金(批准号: 12JJ1001)、教育部博士学科点专项科研基金(批准号: 20110162120072)、教育部新世纪优秀人才支持计划(批准号: NCET-11-0512)和中南大学中央高校基本科研业务费专项资金资助的课题.
      Corresponding author: He Jun, junhe@csu.edu.cn;gubing@seu.edu.cn ; Gu Bing, junhe@csu.edu.cn;gubing@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61222406, 11174371), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJ1001), the Joint Specialized Research Fund for the Doctoral Program of Higher Education, MOE, China (Grant No. 20110162120072), the Program for New Century Excellent Talents in University of China (Grant No. NCET-11-0512), the Fundamental Research Funds for the Central Universities of Central South University, China.
    [1]

    Wang S Y, Hcirsburgh G, Thompson P, Hauksson I, Mullins J T, Prior K A, Cave nett B C 1993 Appl. Phys. Lett. 63 857

    [2]

    Zhang X, Fang H, Tang S, Ji W 1997 Appl. Phys. B 65 549

    [3]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Elect. 26 760

    [4]

    Wang J, Sheik-Bahae M, Said A A, Hagan D J, Stral E W 1994 J. Opt. Soc. Am. B 11 1009

    [5]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761

    [6]

    Gaur A, Sharma D K, Singh K S, Singh N 2007 Solid State Commun. 141 445

    [7]

    Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏, 张铁桥, 王树峰, 龚旗煌 2000 物理学报 49 1292]

    [8]

    He J, Ji W, Ma G H, Tang S H, Kong S E W, Chow S Y, Zhang X H, Hua Z L, Shi J L 2005 Phys. Chem. B 109 4373

    [9]

    Gu B, Fan Y X, Chen J, Wang H T, He J, Ji W 2007 J. Appl. Phys. 102 083101

    [10]

    Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804

    [11]

    Jiang Y, Yang S Y, Zhang X L, Teng F, Xu, Z, Hou Y B 2006 Acta Phys. Sin. 55 4860 (in Chinese) [姜燕, 杨盛谊, 张秀龙, 滕枫, 徐征, 侯延冰 2006 物理学报 55 4860]

    [12]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [13]

    Mita Y, Akami M, Maruyama S 2000 Appl. Phys. Lett. 76 2223

    [14]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H A 2012 Physica B 407 4251

    [15]

    Yao G X, Lv L H, M G F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [16]

    Major A, Yoshino F, Aitchison J S, Smith W P E, Sorokin E, Sorokina I T 2004 Ap pl. Phys. Lett. 85 4606

    [17]

    Lami J F, Gilliot P, Hirlimann C 1996 Phys. Rev. Letters 77 1632

    [18]

    Canto-Said E J, Hagan D J, Young J, Stryland Van E W 1991 IEEE J. Quantum Elect. 27 10

    [19]

    Astakhov G V, Yakovlev D R 2002 Phys. Rev. B 65 165335

    [20]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [21]

    Sahraoui B, Chevalier R, Nguyen Phu X, Rivoire G, Bala W 1996 J. Appl. Phys. 80 4854

    [22]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [23]

    Jia T Q, Chen H X, Huang M, Zhao F L, Qiu J R, Li R X, Xu Z Z, He X K, Zhan g J, Kuroda H 2005 Phys. Rev. B 72 125429

    [24]

    Noor S A M, Miyakawa A, Kawata Y, Torizawa M 2008 Appl. Phys. Lett. 92 161106

    [25]

    Masoumeh S M, Wan M M Y, Khor S F, Zainal A T, Tamchek N 2013 Chin. Phys. B 22 117802

    [26]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [27]

    He J, Mi J, Li H P, Ji W 2005 J. Phys. Chem. B 109 19184

    [28]

    Gu B, Sun Y, Ji W 2008 Opt. Express 16 17745

    [29]

    He J, Qu Y L, Li H P, Mi J, Ji W 2005 Opt. Express 13 9235

    [30]

    Van Stryland E W, Vanherzeele H, Woodall M A, Soileau M J, Smirl A L, Guha S, Boggess T F 1985 Opt. Eng. 24 613

    [31]

    Mehendale M, Sivananthan S, Andreas Schroeder W 1997 Appl. Phys. Lett. 71 1089

    [32]

    Perna G, Capozzi V, Ambrico M 1998 J. Appl. Phys. 83 3337

    [33]

    Wu W Z, Wang Y G 2015 Opt. Lett. 40 64

  • [1]

    Wang S Y, Hcirsburgh G, Thompson P, Hauksson I, Mullins J T, Prior K A, Cave nett B C 1993 Appl. Phys. Lett. 63 857

    [2]

    Zhang X, Fang H, Tang S, Ji W 1997 Appl. Phys. B 65 549

    [3]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Elect. 26 760

    [4]

    Wang J, Sheik-Bahae M, Said A A, Hagan D J, Stral E W 1994 J. Opt. Soc. Am. B 11 1009

    [5]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761

    [6]

    Gaur A, Sharma D K, Singh K S, Singh N 2007 Solid State Commun. 141 445

    [7]

    Yang H, Zhang T Q, Wang S F, Gong Q H 2000 Acta Phys. Sin. 49 1292 (in Chinese) [杨宏, 张铁桥, 王树峰, 龚旗煌 2000 物理学报 49 1292]

    [8]

    He J, Ji W, Ma G H, Tang S H, Kong S E W, Chow S Y, Zhang X H, Hua Z L, Shi J L 2005 Phys. Chem. B 109 4373

    [9]

    Gu B, Fan Y X, Chen J, Wang H T, He J, Ji W 2007 J. Appl. Phys. 102 083101

    [10]

    Fan G H, Qu S L, Guo Z Y, Wang Q, Li Z G 2012 Chin. Phys. B 21 047804

    [11]

    Jiang Y, Yang S Y, Zhang X L, Teng F, Xu, Z, Hou Y B 2006 Acta Phys. Sin. 55 4860 (in Chinese) [姜燕, 杨盛谊, 张秀龙, 滕枫, 徐征, 侯延冰 2006 物理学报 55 4860]

    [12]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [13]

    Mita Y, Akami M, Maruyama S 2000 Appl. Phys. Lett. 76 2223

    [14]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H A 2012 Physica B 407 4251

    [15]

    Yao G X, Lv L H, M G F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [16]

    Major A, Yoshino F, Aitchison J S, Smith W P E, Sorokin E, Sorokina I T 2004 Ap pl. Phys. Lett. 85 4606

    [17]

    Lami J F, Gilliot P, Hirlimann C 1996 Phys. Rev. Letters 77 1632

    [18]

    Canto-Said E J, Hagan D J, Young J, Stryland Van E W 1991 IEEE J. Quantum Elect. 27 10

    [19]

    Astakhov G V, Yakovlev D R 2002 Phys. Rev. B 65 165335

    [20]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [21]

    Sahraoui B, Chevalier R, Nguyen Phu X, Rivoire G, Bala W 1996 J. Appl. Phys. 80 4854

    [22]

    Krauss T D, Wise F W 1994 Appl. Phys. Lett. 65 1739

    [23]

    Jia T Q, Chen H X, Huang M, Zhao F L, Qiu J R, Li R X, Xu Z Z, He X K, Zhan g J, Kuroda H 2005 Phys. Rev. B 72 125429

    [24]

    Noor S A M, Miyakawa A, Kawata Y, Torizawa M 2008 Appl. Phys. Lett. 92 161106

    [25]

    Masoumeh S M, Wan M M Y, Khor S F, Zainal A T, Tamchek N 2013 Chin. Phys. B 22 117802

    [26]

    Li X, Feng D H, He H Y, Jia T Q, Shan L F, Sun Z R, Xu Z Z 2012 Acta Phys. Sin. 61 197801 (in Chinese) [李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展 2012 物理学报 61 197801]

    [27]

    He J, Mi J, Li H P, Ji W 2005 J. Phys. Chem. B 109 19184

    [28]

    Gu B, Sun Y, Ji W 2008 Opt. Express 16 17745

    [29]

    He J, Qu Y L, Li H P, Mi J, Ji W 2005 Opt. Express 13 9235

    [30]

    Van Stryland E W, Vanherzeele H, Woodall M A, Soileau M J, Smirl A L, Guha S, Boggess T F 1985 Opt. Eng. 24 613

    [31]

    Mehendale M, Sivananthan S, Andreas Schroeder W 1997 Appl. Phys. Lett. 71 1089

    [32]

    Perna G, Capozzi V, Ambrico M 1998 J. Appl. Phys. 83 3337

    [33]

    Wu W Z, Wang Y G 2015 Opt. Lett. 40 64

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响. 物理学报, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清, 刘蓉. 光子重吸收对硅片的光载流子辐射特性影响的理论研究. 物理学报, 2019, 68(4): 047201. doi: 10.7498/aps.68.20181889
    [4] 王谦, 刘卫国, 巩蕾, 王利国, 李亚清. 双波长自由载流子吸收技术测量半导体载流子体寿命和表面复合速率. 物理学报, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [5] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性. 物理学报, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [6] 张希仁, 高椿明. 方波调制下自由载流子吸收测量半导体载流子输运参数的时域模型. 物理学报, 2014, 63(13): 137801. doi: 10.7498/aps.63.137801
    [7] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [8] 崔昊杨, 李志锋, 马法君, 陈效双, 陆卫. 硅的间接跃迁双光子吸收系数谱. 物理学报, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [9] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应. 物理学报, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [10] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面. 物理学报, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收. 物理学报, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响. 物理学报, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  3180
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-14
  • 修回日期:  2015-04-26
  • 刊出日期:  2015-09-05

双光子激发ZnSe自由载流子超快动力学研究

  • 1. 中南大学物理与电子学院先进材料超微结构与超快过程研究所, 中南大学超微结构与超快过程湖南省重点实验室, 长沙 410083;
  • 2. 东南大学电子科学与工程学院先进光子学中心, 南京 210096
  • 通信作者: 何军, junhe@csu.edu.cn;gubing@seu.edu.cn ; 顾兵, junhe@csu.edu.cn;gubing@seu.edu.cn
    基金项目: 国家自然科学基金(批准号: 61222406, 11174371)、湖南省自然科学基金(批准号: 12JJ1001)、教育部博士学科点专项科研基金(批准号: 20110162120072)、教育部新世纪优秀人才支持计划(批准号: NCET-11-0512)和中南大学中央高校基本科研业务费专项资金资助的课题.

摘要: 采用Z扫描和抽运-探测实验技术, 在波长为532 nm、脉冲宽度为41 fs的条件下测得ZnSe晶体的双光子吸收系数, 并获得了不同激发光强下的自由载流子吸收截面、电子-空穴带间复合时间和电子-声子耦合时间. 研究发现, 随着激发光强的增大, 自由载流子吸收截面减小, 复合时间变短. 当激发光强增大导致载流子浓度大于1018 cm-3时, 抽运-探测信号出现明显改变, 原因归结为强光场激发导致样品在短时间内带隙变窄和电子-空穴等离子体的形成.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回