搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海环境中用于目标深度属性判别的线谱起伏特征量分析

邓玉鑫 刘雄厚 杨益新

引用本文:
Citation:

浅海环境中用于目标深度属性判别的线谱起伏特征量分析

邓玉鑫, 刘雄厚, 杨益新

Analysis of line spectral fluctuation characteristics for source depth discrimination in shallow water

Deng Yu-Xin, Liu Xiong-Hou, Yang Yi-Xin
PDF
HTML
导出引用
  • 浅海环境中目标辐射线谱的起伏特征可用于水面、水下目标深度属性判别. 已有研究未给出表征水面、水下线谱起伏差异的物理量性质, 导致利用不同物理量进行目标深度属性判别时性能不佳. 针对这一问题, 本文从声源深度起伏所导致的线谱起伏出发, 采用微分方法与统计方法对线谱起伏规律进行分析, 研究了线谱起伏产生的物理机理, 得到了适合用于水面、水下目标深度属性判别的物理量. 首先, 分别推导了复声压实部、声功率与声压幅值关于声源深度的导数关系式, 得到了以上三种物理量在声源深度起伏时的起伏大小; 其次, 利用仿真实验数据从接收深度、声源水平距离、线谱频率等层面对理论推导进行验证, 并对线谱的归一化起伏特征进行了分析. 最后, 利用海试数据验证了相关结论. 结果表明, 当声源的深度起伏时, 水面、水下线谱的起伏差异源自各阶模态的相互作用. 声源频率、声源水平距离、接收深度三种因素决定了模态间相互作用的性质. 声压幅值适用于构建目标深度属性判别特征量, 可用于表征低频线谱的强度起伏差异. 数值仿真和海试数据处理结果表明, 相较于声压实部和声功率, 利用声压幅值构建的归一化水面、水下目标深度属性判别特征量具有更优性能.
    The difference in intensity fluctuation between a surface signal and a submerged signal can be used to discriminate the source depth in the shallow water waveguide. However, the properties of fluctuation distinction in intensity between surface source and submerge source are rarely studied, resulting in the poor performance of fluctuation-based methods sometimes. In this work, the intensity fluctuations caused by source depth fluctuations is analyzed by differential method and variance statistics method to figure out the physics of intensity fluctuations, and to present the suitable quantity for depth discrimination. Firstly, the derivative expression of real part, power and amplitude of the pressure field are respectively derived from the normal mode theory, hence their fluctuation quantities are specified. Then, the numerical examples, including the factor of receiver depth, source frequency and source range, are treated to verify the derivation and summarize the characteristic of fluctuations. The property of the intensity fluctuations is also compared with the distribution of normalized quantity on the depth dimension. Finally, the SWellEx-96 experimental data processing results validate the conclusions. The processing results of derivation, simulation data and experimental data show that the interactions between modes excited by the source give rise to the fluctuations. Meanwhile, the property of the interactions is affected by the received depth, source range and source frequency. Amplitude is capable of building a quantity based on fluctuations for source depth discrimination. For surface and submerged sources with lower frequency, their distinction in their fluctuations is stably represented by amplitude. In the SWellEx-96 experiment, the normalized values calculated from the amplitude of surface noise and submerged sound sources show the lowest difference of 0.5 and the highest difference of 2.5, indicating the effectiveness of using amplitude fluctuations to discriminate the sound source depth.
      通信作者: 刘雄厚, xhliu@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U2341203, 12274346)和国家重点研发计划(批准号: 2016YFC1400200)资助的课题.
      Corresponding author: Liu Xiong-Hou, xhliu@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U2341203, 12274346) and the National Key R&D Program of China (Grant No. 2016YFC1400200).
    [1]

    余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335Google Scholar

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335Google Scholar

    [2]

    刘志韬, 郭良浩, 闫超 2019 声学学报 44 28Google Scholar

    Liu Z T, Guo L H, Yan C 2019 Acta Acust. 44 28Google Scholar

    [3]

    Yang T C 2015 J. Acoust. Soc. Am. 138 1678Google Scholar

    [4]

    李晓彬, 孙超, 刘雄厚 2022 物理学报 71 134302Google Scholar

    Li X B, Sun C, Liu X H 2022 Acta Phys. Sin. 71 134302Google Scholar

    [5]

    Urick R J 1977 J. Acoust. Soc. Am. 62 878Google Scholar

    [6]

    高大治, 翟林, 王好忠, 高博, 王宁 2017 声学学报 42 669Google Scholar

    Gao D Z, Zhai L, Wang H Z, Gao B, Wang N 2017 Acta Acust. 42 669Google Scholar

    [7]

    Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301 [周建波, 朴胜春, 刘亚琴, 祝捍皓 2017 物理学报 66 014301]Google Scholar

    Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301Google Scholar

    [8]

    Georges A D, Kevin B S, Mohsen B, James H M, Gopu R P 2019 J. Acoust. Soc. Am. 146 1875Google Scholar

    [9]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [10]

    何兆阳, 雷波, 杨益新 2023 物理学报 72 144301Google Scholar

    He Z Y, Lei B, Yang Y X 2023 Acta Phys. Sin. 72 144301Google Scholar

    [11]

    Joseph A S 1961 J. Acoust. Soc. Am. 33 239Google Scholar

    [12]

    Clay C S, Wang Y Y, Shang E C 1985 J. Acoust. Soc. Am. 77 424Google Scholar

    [13]

    Jacob G 1996 J. Acoust. Soc. Am. 99 3439Google Scholar

    [14]

    Jemmott C W, Culver R L 2011 IEEE J. Oceanic Eng. 36 696Google Scholar

    [15]

    Premus V 1999 J. Acoust. Soc. Am. 105 2170Google Scholar

    [16]

    谢志诚, 葛辉良 2015 声学与电子工程 2015 24

    Xie Z C, Ge H L 2015 Acoust. Electron. Eng. 2015 24

    [17]

    An L, Fang S L, Chen L J 2013 Journal of Southeast University (English Edition) 29 235

    [18]

    Shi J J, Sun D J, Fu H L, Liu Q Y, Zhang W S 2019 IET Radar Sonar Navig. 13 2151Google Scholar

    [19]

    Li X B, Sun C, Liu X H 2021 OES China Ocean Acoustics (COA) Harbin, China, 2021 p976

    [20]

    Wagstaff R A 1997 IEEE J. Oceanic Eng. 22 110Google Scholar

    [21]

    张莉 2021 硕士学位论文 (南京: 东南大学)

    Zhang L 2021 M. S. Thesis (Nanjing: Southeast University

    [22]

    恽宗杨 1965 声学学报 2 144Google Scholar

    Yun Z Y 1965 Acta Acust. 2 144Google Scholar

    [23]

    毕雪洁 2019 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Bi X J 2019 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [24]

    Marine Physical Lab http:// swellex96.ucsd.edu/ [2023-11-08]

    [25]

    汪德昭, 尚尔昌 2013 水声学(第二版) (北京: 科学出版社) 第345页—352页

    Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed.) (Beijing: Science Press) pp345–352

  • 图 1  理想环境中的起伏声源示意图

    Fig. 1.  Moving source moving at a varying depth in an ideal waveguide.

    图 2  (a) 单一模态函数零、极值点分布; (b) 模态叠加后零、极值点分布

    Fig. 2.  (a) Distribution of zero points and extreme points for single mode; (b) distribution of zero points and extreme points for superposed modes.

    图 3  仿真环境

    Fig. 3.  Simulation environment.

    图 4  接收深度35 m时的线谱起伏特征 (a) 184 dB声源; (b) 194 dB声源

    Fig. 4.  Characteristic of fluctuation received by a 35 m hydrophone: (a) 184 dB source; (b) 194 dB source.

    图 5  接收深度-声源深度维5 km处的30 Hz线谱起伏特征 (a) 复声压实部; (b) 声功率; (c) 声压幅值

    Fig. 5.  Characteristic of 30 Hz source’s intensity fluctuation in the receiver-source depth dimension, source range 5 km: (a) Real part of the pressure field; (b) power; (c) amplitude.

    图 6  接收深度-声源深度维4 km处的30 Hz线谱起伏特征 (a) 复声压实部; (b) 声功率; (c) 声压幅值

    Fig. 6.  Characteristic of 30 Hz source’s intensity fluctuation in the receiver-source depth dimension, source range 4 km: (a) Real part of the pressure field; (b) sound power; (c) amplitude of sound pressure.

    图 7  接收深度-声源深度维40 Hz线谱起伏特征 (a) 复声压实部; (b) 声功率; (c) 声压幅值

    Fig. 7.  Characteristic of 40 Hz source’s intensity fluctuation in the receiver-source depth dimension: (a) Real part of the pressure field; (b) sound power; (c) amplitude of sound pressure.

    图 8  接收深度-声源深度维50 Hz线谱起伏特征 (a) 复声压实部; (b) 声功率; (c) 声压幅值

    Fig. 8.  Characteristic of 50 Hz source’s intensity fluctuation in the receiver-source depth dimension: (a) Real part of the pressure field; (b) sound power; (c) amplitude of sound pressure.

    图 9  声源频率(模态阶数)与临界深度的关系 (a) 方差0.8; (b) 方差0.6

    Fig. 9.  Relationship between the signal frequency (order of excited modal) and the critical depth: (a) Variance 0.8; (b) variance 0.6.

    图 10  30 Hz线谱声压幅值方差与归一化特征量的对比(a) 接收深度35 m; (b) 接收深度90 m

    Fig. 10.  Contrast of 30 Hz amplitude variance and normalized quantity: (a) Received by 35 m hydrophone; (b) received by 90 m hydrophone.

    图 11  声源水平运动距离对线谱起伏特征量的影响

    Fig. 11.  Influence of source moving on the normalized quantity.

    图 12  接收数据频谱分析 (a) 时频图; (b) 频谱归一化幅值

    Fig. 12.  Spectral analysis of received data: (a) Time-frequency image; (b) normalized amplitude.

    图 13  试验数据处理流程

    Fig. 13.  Flow of data processing.

    图 14  声压幅值的归一化特征量

    Fig. 14.  Normalized quantity of amplitude in SWellEx-96.

    表 1  仿真用接收点-声源参数

    Table 1.  Parameters for simulation.

    参数 数值
    接收深度/m 35
    声源频率/Hz 30
    声源级/dB 184, 194
    声源运动中心深度/m [2:1:98]
    声源水平距离/km 5
    声源激发模态阶数 3
    声源深度起伏次数 100
    注: [2:1:98]表示深度的变化区间, 从2 m到98 m每间隔1 m取一个深度点
    下载: 导出CSV

    表 2  复声压实部的模态加权系数符号

    Table 2.  Sign of modal weighting coefficient.

    接收深度/m 35 90
    水平距离5 km – – – – + –
    水平距离4 km + – + + + +
    下载: 导出CSV

    表 3  待分析样本

    Table 3.  Samples to be analyzed.

    声源深度属性水面水下
    声源频率/Hz1635353536364949
    起始时刻/min6.626.228.830.29.219.45260
    结束时刻/min10.626.828.830.49.62053.661.4
    下载: 导出CSV
  • [1]

    余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 物理学报 58 6335Google Scholar

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335Google Scholar

    [2]

    刘志韬, 郭良浩, 闫超 2019 声学学报 44 28Google Scholar

    Liu Z T, Guo L H, Yan C 2019 Acta Acust. 44 28Google Scholar

    [3]

    Yang T C 2015 J. Acoust. Soc. Am. 138 1678Google Scholar

    [4]

    李晓彬, 孙超, 刘雄厚 2022 物理学报 71 134302Google Scholar

    Li X B, Sun C, Liu X H 2022 Acta Phys. Sin. 71 134302Google Scholar

    [5]

    Urick R J 1977 J. Acoust. Soc. Am. 62 878Google Scholar

    [6]

    高大治, 翟林, 王好忠, 高博, 王宁 2017 声学学报 42 669Google Scholar

    Gao D Z, Zhai L, Wang H Z, Gao B, Wang N 2017 Acta Acust. 42 669Google Scholar

    [7]

    Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301 [周建波, 朴胜春, 刘亚琴, 祝捍皓 2017 物理学报 66 014301]Google Scholar

    Zhou J B, Piao S C, Liu Y Q, Zhu H H 2017 Acta Phys. Sin. 66 014301Google Scholar

    [8]

    Georges A D, Kevin B S, Mohsen B, James H M, Gopu R P 2019 J. Acoust. Soc. Am. 146 1875Google Scholar

    [9]

    李沁然, 孙超, 谢磊 2022 物理学报 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [10]

    何兆阳, 雷波, 杨益新 2023 物理学报 72 144301Google Scholar

    He Z Y, Lei B, Yang Y X 2023 Acta Phys. Sin. 72 144301Google Scholar

    [11]

    Joseph A S 1961 J. Acoust. Soc. Am. 33 239Google Scholar

    [12]

    Clay C S, Wang Y Y, Shang E C 1985 J. Acoust. Soc. Am. 77 424Google Scholar

    [13]

    Jacob G 1996 J. Acoust. Soc. Am. 99 3439Google Scholar

    [14]

    Jemmott C W, Culver R L 2011 IEEE J. Oceanic Eng. 36 696Google Scholar

    [15]

    Premus V 1999 J. Acoust. Soc. Am. 105 2170Google Scholar

    [16]

    谢志诚, 葛辉良 2015 声学与电子工程 2015 24

    Xie Z C, Ge H L 2015 Acoust. Electron. Eng. 2015 24

    [17]

    An L, Fang S L, Chen L J 2013 Journal of Southeast University (English Edition) 29 235

    [18]

    Shi J J, Sun D J, Fu H L, Liu Q Y, Zhang W S 2019 IET Radar Sonar Navig. 13 2151Google Scholar

    [19]

    Li X B, Sun C, Liu X H 2021 OES China Ocean Acoustics (COA) Harbin, China, 2021 p976

    [20]

    Wagstaff R A 1997 IEEE J. Oceanic Eng. 22 110Google Scholar

    [21]

    张莉 2021 硕士学位论文 (南京: 东南大学)

    Zhang L 2021 M. S. Thesis (Nanjing: Southeast University

    [22]

    恽宗杨 1965 声学学报 2 144Google Scholar

    Yun Z Y 1965 Acta Acust. 2 144Google Scholar

    [23]

    毕雪洁 2019 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Bi X J 2019 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [24]

    Marine Physical Lab http:// swellex96.ucsd.edu/ [2023-11-08]

    [25]

    汪德昭, 尚尔昌 2013 水声学(第二版) (北京: 科学出版社) 第345页—352页

    Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed.) (Beijing: Science Press) pp345–352

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [4] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [5] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [6] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [7] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [8] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [9] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [10] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [11] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [12] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [13] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [14] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [15] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [16] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [17] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [18] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  1741
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-05-15
  • 上网日期:  2024-05-21
  • 刊出日期:  2024-07-05

/

返回文章
返回