搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海波导中折射类简正波的warping变换

戚聿波 周士弘 张仁和

引用本文:
Citation:

浅海波导中折射类简正波的warping变换

戚聿波, 周士弘, 张仁和

Warping transform of the refractive normal mode in a shallow water waveguide

Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He
PDF
导出引用
  • Warping变换可以实现单水听器浅海低频声波导的简正波分离. 本文讨论了海水声速随深度线性减小浅海波导中折射类简正波的warping变换. 理论推导了海水折射类简正波水平波数、频域相位及瞬时相位的表达式, 由此提出了相应的时域和频域warping变换算子, 并由仿真数据进行了验证. 本文的理论推导过程同样适用于海水声速线性增大或海水折射系数的平方随深度线性变化的浅海波导.
    In a shallow water waveguide, the low-frequency acoustic field can be viewed as a sum of normal modes. Warping transform provides an effective tool to filter the normal modes from the received signal of a single hydrophone, which can be used for source ranging and geoacoustic inversion. However, it should be noted that the conventional warping operator h(t) = t2+tr2 is only valid for a signal consisting of reflection dominated modes, where r represents the source range. In a waveguide with a strong thermocline or a surface channel where refracted modes dominate the received sound field, the dispersive characteristics of the waveguide become different and the performance of the warping operator h(t) = t2+tr2 will be significantly degraded. In this paper, the dispersive characteristics and warping transform of the refractive normal modes in a waveguide with a linearly decreased sound speed profile are discussed. The formulae for the horizontal wavenumber, the phase in frequency domain and the instantaneous phase in time domain of the refractive mode are deduced. Based on these formulae, the time warping and frequency warping operators verified by the simulated data are presented. Through time-axis stretching or compression, the time warping operator h(t) =tr-t2, where tr= r/c(h) and c(h) represents the bottom sound speed, can transform the refracted modes into single-tone components of frequencies determined by source range, sound speed gradient of water, bottom sound speed and mode number. The frequency warping operator h(f) = Df3, where D is a constant, can transform the refracted modes into separable impulsive sequences through frequency-axis stretching or compression and the time delay of the impulsive sequences changes linearly with the source range. As the warped modes are separated in time domain or frequency domain, these two operators can be used for filtering the refracted normal modes from the received signal. The theories in this paper are also applicable for refractive modes in the waveguide with a linearly increased sound speed profile or a linear variation of the square of the index of refraction (n2-linear sound speed profile).
      通信作者: 周士弘, shih_zhou@mail.ioa.ac.cn
    • 基金项目: 中国科学院百人计划择优资助的课题.
      Corresponding author: Zhou Shi-Hong, shih_zhou@mail.ioa.ac.cn
    • Funds: Project supported by 100 Talents Project of Chinese Academy of Sciences.
    [1]

    Baraniuk R G, Jones D L 1995 IEEE T. Signal Proces. 43 2269

    [2]

    Zeng J, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394

    [3]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [4]

    Bonnel J, Gervaise C, Nicolas B, Mars J I, Walker S C 2012 J. Acoust. Soc. Am. 131 119

    [5]

    Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101

    [6]

    Bonnel J, Thode A M, Blackwell S B, Katherine K, Macrander A M 2014 J. Acoust. Soc. Am. 136 145

    [7]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 物理学报 64 024305]

    [8]

    Bonnel J, Touz G L, Nicolas B, Mars J I 2013 IEEE Signal Proc. Mag. 6 120

    [9]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [10]

    Touz G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Proces 57 1783

    [11]

    Niu H Q, Zhang R H, Li Z L 2014 J. Acoust. Soc. Am. 136 53

    [12]

    Niu H Q, Zhang R H, Li Z L 2014 Sci. China: Ser. G 57 424

    [13]

    Zhang R H, Li F H 1999 Sci. China: Ser. A 29 241 (in Chinese) [张仁和, 李风华 1999 中国科学A辑 29 241]

    [14]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 74301 (in Chinese) [戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 64 74301]

    [15]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China: Ser. G 57 225

    [16]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 J. Comput. Acoust. 23 1550003

    [17]

    Qi Y B, Zhou S H, Ren Y, Liu J J, Wang D J, Feng X Q 2015 Acta Acoust. 40 144 (in Chinese) [戚聿波, 周士弘, 任云, 刘建军, 王德俊, 冯希强 2015 声学学报 40 144]

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408

    [20]

    Cockrell K L, Schmidt H 2011 J. Acoust. Soc. Am. 130 72

    [21]

    Brekhovskih L M 1980 Waves in Layered Media (2nd Ed.) (New York: Academy Press) p6

    [22]

    Bender C M, Orszag SA 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p276

    [23]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1]

    Baraniuk R G, Jones D L 1995 IEEE T. Signal Proces. 43 2269

    [2]

    Zeng J, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394

    [3]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [4]

    Bonnel J, Gervaise C, Nicolas B, Mars J I, Walker S C 2012 J. Acoust. Soc. Am. 131 119

    [5]

    Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101

    [6]

    Bonnel J, Thode A M, Blackwell S B, Katherine K, Macrander A M 2014 J. Acoust. Soc. Am. 136 145

    [7]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 物理学报 64 024305]

    [8]

    Bonnel J, Touz G L, Nicolas B, Mars J I 2013 IEEE Signal Proc. Mag. 6 120

    [9]

    Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61

    [10]

    Touz G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Proces 57 1783

    [11]

    Niu H Q, Zhang R H, Li Z L 2014 J. Acoust. Soc. Am. 136 53

    [12]

    Niu H Q, Zhang R H, Li Z L 2014 Sci. China: Ser. G 57 424

    [13]

    Zhang R H, Li F H 1999 Sci. China: Ser. A 29 241 (in Chinese) [张仁和, 李风华 1999 中国科学A辑 29 241]

    [14]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 74301 (in Chinese) [戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 64 74301]

    [15]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China: Ser. G 57 225

    [16]

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 J. Comput. Acoust. 23 1550003

    [17]

    Qi Y B, Zhou S H, Ren Y, Liu J J, Wang D J, Feng X Q 2015 Acta Acoust. 40 144 (in Chinese) [戚聿波, 周士弘, 任云, 刘建军, 王德俊, 冯希强 2015 声学学报 40 144]

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408

    [20]

    Cockrell K L, Schmidt H 2011 J. Acoust. Soc. Am. 130 72

    [21]

    Brekhovskih L M 1980 Waves in Layered Media (2nd Ed.) (New York: Academy Press) p6

    [22]

    Bender C M, Orszag SA 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p276

    [23]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [3] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [4] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [5] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [6] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [7] 贾雨晴, 苏林, 郭圣明, 马力. 基于简正波分解的不同阵列匹配场定位性能分析. 物理学报, 2018, 67(17): 174302. doi: 10.7498/aps.67.20180124
    [8] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [9] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [10] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [11] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [12] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [13] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [14] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [15] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [16] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [17] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [18] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  6747
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-12
  • 修回日期:  2016-04-15
  • 刊出日期:  2016-07-05

/

返回文章
返回