-
为了获得浅海海底地声模型参数,利用warping变换方法分离出单模态简正波.对于接收深度固定、定深爆炸声源情况,以简正波理论为基础定义了距离归一化的简正波传播损失,并且其随传播的距离呈线性关系,故可通过此变化规律得到声压值实部的衰减因子,进而可求得海底地声模型参数:海底衰减系数.为验证此方法的有效性,仿真了warping变换提取单模态简正波的过程,同时将warping变换提取的单模态简正波与数值计算的结果进行比较验证;并针对某次黄海试验数据进行了处理,得到在150550 Hz频带范围内海底衰减随频率的变化规律为=0.581fk1.86(dB/m).通过与其他学者在相同海域试验结果的对比验证,变化规律基本相同.此外不同模态间反演相同频点的衰减系数接近也较好地支撑了结果.Seabed is an important part of the marine environment and it has a significant influence on sound propagation. Considering the fact that geoacoustic parameters are directly acquired with difficulty and complexity, a lot of researchers have focused on the inversion of them. The seabed attenuation coefficient is insensitivity to the matching field. However it has great effects on the transmission loss, mode amplitude ratios, etc. It can be inverted from measurements of these quantities. In this paper, we present an inversion scheme based on warping transform technique for estimating the seabed attenuation coefficient. It utilizes an equivalent seabed model which is constructed by using a prior and posterior knowledge. The dispersion characteristics of normal modes can be observed using the time-frequency analysis of the explosive signal recorded. The dispersion curve can be used to invert the seabed sound speed and density. The results presented by other scholars in the same circle are cited in this paper that focuses on how to obtain the seabed attenuation. Warping transform technique is used to separate and extract the normal modes. The main advantage of warping transform is that it can transform the time-frequency spectrogram into linear relationship which makes it easier to extract the normal modes. The feature of this paper lies in determining the distance normalized normal mode transmission loss. If the depths of receiving hydrophone and the explosion source are constant, the plot of normalized normal mode transmission loss versus distance is a straight line from the normal modes theory, which can be used to obtain the attenuation factor of real part of pressure. Then the seabed attenuation coefficient of the shallow water acoustic model can be calculated. In order to verify the effectiveness of this method, the warping transformation technology is used to separate and extract the first three modes from the simulated Gaussian pulse signal which is obtained in a simulated environment which is similar to the real marine environment. The extracted results are completely consistent with the numerical results. After that, the impulsive signal data collected in the Yellow Sea are analyzed according to the scheme process, and the relationship between the seabed attenuation and frequency is =0.581fk1.86(dB/m) in a range from 150 Hz to 550 Hz. The results are in good agreement with those obtained by other scholars in the same circle. On the other hand, the inversion results of seabed attenuation from different modes can be used for comparison at the same frequency, which can be a good support for the result.
-
Keywords:
- warping transform /
- extract the mode /
- matched curve /
- seabed attenuation
[1] Peng Z H, Zhou J X 2004 IEEE J. Oceanic Engineer. 29 4
[2] Jiang Y M, Chapman N R 2009 J. Acoust. Soc. Am. 125 4
[3] Tindle C T 1982 J. Acoust. Soc. Am. 71 5
[4] Potty G R, Miller J H, Lynch J F 2003 J. Acoust. Soc. Am. 114 4
[5] Holmes J D, Carey W M, Dediu S M, Siegmann W L 2007 J. Acoust. Soc. Am. 121 5
[6] Zhou J X 1985 J. Acoust. Soc. Am. 78 3
[7] Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 6 (in Chinese)[李整林, 鄢锦, 李风华, 郭良浩2002声学学报27 6]
[8] Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Proc. 43 2269
[9] Bonnel J, Le Touz G, Nicolas B, Mars J I 2013 IEEE Signal Proc. Magazine 30 120
[10] Bonnel J, Barbara N 2010 J. Acoust. Soc. Am. 128 719
[11] Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394
[12] Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese)[鹿力成, 马力2015物理学报64 024305]
[13] Duan R, Chapman N R, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 70
[14] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acoust. 41 1 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明2016声学学报41 1]
[15] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese)[戚聿波2014物理学报63 044303]
[16] Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报65 104302]
[17] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1992 Computational Ocean Acoustics (New York:Springer) pp385-389
-
[1] Peng Z H, Zhou J X 2004 IEEE J. Oceanic Engineer. 29 4
[2] Jiang Y M, Chapman N R 2009 J. Acoust. Soc. Am. 125 4
[3] Tindle C T 1982 J. Acoust. Soc. Am. 71 5
[4] Potty G R, Miller J H, Lynch J F 2003 J. Acoust. Soc. Am. 114 4
[5] Holmes J D, Carey W M, Dediu S M, Siegmann W L 2007 J. Acoust. Soc. Am. 121 5
[6] Zhou J X 1985 J. Acoust. Soc. Am. 78 3
[7] Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 6 (in Chinese)[李整林, 鄢锦, 李风华, 郭良浩2002声学学报27 6]
[8] Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Proc. 43 2269
[9] Bonnel J, Le Touz G, Nicolas B, Mars J I 2013 IEEE Signal Proc. Magazine 30 120
[10] Bonnel J, Barbara N 2010 J. Acoust. Soc. Am. 128 719
[11] Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394
[12] Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese)[鹿力成, 马力2015物理学报64 024305]
[13] Duan R, Chapman N R, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 70
[14] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acoust. 41 1 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明2016声学学报41 1]
[15] Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese)[戚聿波2014物理学报63 044303]
[16] Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报65 104302]
[17] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1992 Computational Ocean Acoustics (New York:Springer) pp385-389
计量
- 文章访问数: 6247
- PDF下载量: 157
- 被引次数: 0