搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

warping变换提取单模态反演海底衰减系数

李佳蔚 鹿力成 郭圣明 马力

引用本文:
Citation:

warping变换提取单模态反演海底衰减系数

李佳蔚, 鹿力成, 郭圣明, 马力

Inversion of seabed attenuation by using single mode extracted by warping transform

Li Jia-Wei, Lu Li-Cheng, Guo Sheng-Ming, Ma Li
PDF
导出引用
  • 为了获得浅海海底地声模型参数,利用warping变换方法分离出单模态简正波.对于接收深度固定、定深爆炸声源情况,以简正波理论为基础定义了距离归一化的简正波传播损失,并且其随传播的距离呈线性关系,故可通过此变化规律得到声压值实部的衰减因子,进而可求得海底地声模型参数:海底衰减系数.为验证此方法的有效性,仿真了warping变换提取单模态简正波的过程,同时将warping变换提取的单模态简正波与数值计算的结果进行比较验证;并针对某次黄海试验数据进行了处理,得到在150550 Hz频带范围内海底衰减随频率的变化规律为=0.581fk1.86(dB/m).通过与其他学者在相同海域试验结果的对比验证,变化规律基本相同.此外不同模态间反演相同频点的衰减系数接近也较好地支撑了结果.
    Seabed is an important part of the marine environment and it has a significant influence on sound propagation. Considering the fact that geoacoustic parameters are directly acquired with difficulty and complexity, a lot of researchers have focused on the inversion of them. The seabed attenuation coefficient is insensitivity to the matching field. However it has great effects on the transmission loss, mode amplitude ratios, etc. It can be inverted from measurements of these quantities. In this paper, we present an inversion scheme based on warping transform technique for estimating the seabed attenuation coefficient. It utilizes an equivalent seabed model which is constructed by using a prior and posterior knowledge. The dispersion characteristics of normal modes can be observed using the time-frequency analysis of the explosive signal recorded. The dispersion curve can be used to invert the seabed sound speed and density. The results presented by other scholars in the same circle are cited in this paper that focuses on how to obtain the seabed attenuation. Warping transform technique is used to separate and extract the normal modes. The main advantage of warping transform is that it can transform the time-frequency spectrogram into linear relationship which makes it easier to extract the normal modes. The feature of this paper lies in determining the distance normalized normal mode transmission loss. If the depths of receiving hydrophone and the explosion source are constant, the plot of normalized normal mode transmission loss versus distance is a straight line from the normal modes theory, which can be used to obtain the attenuation factor of real part of pressure. Then the seabed attenuation coefficient of the shallow water acoustic model can be calculated. In order to verify the effectiveness of this method, the warping transformation technology is used to separate and extract the first three modes from the simulated Gaussian pulse signal which is obtained in a simulated environment which is similar to the real marine environment. The extracted results are completely consistent with the numerical results. After that, the impulsive signal data collected in the Yellow Sea are analyzed according to the scheme process, and the relationship between the seabed attenuation and frequency is =0.581fk1.86(dB/m) in a range from 150 Hz to 550 Hz. The results are in good agreement with those obtained by other scholars in the same circle. On the other hand, the inversion results of seabed attenuation from different modes can be used for comparison at the same frequency, which can be a good support for the result.
      通信作者: 鹿力成, luce_1983@sina.com
    • 基金项目: 国家自然科学基金(批准号:11004214,11274338)资助的课题.
      Corresponding author: Lu Li-Cheng, luce_1983@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004214, 11274338).
    [1]

    Peng Z H, Zhou J X 2004 IEEE J. Oceanic Engineer. 29 4

    [2]

    Jiang Y M, Chapman N R 2009 J. Acoust. Soc. Am. 125 4

    [3]

    Tindle C T 1982 J. Acoust. Soc. Am. 71 5

    [4]

    Potty G R, Miller J H, Lynch J F 2003 J. Acoust. Soc. Am. 114 4

    [5]

    Holmes J D, Carey W M, Dediu S M, Siegmann W L 2007 J. Acoust. Soc. Am. 121 5

    [6]

    Zhou J X 1985 J. Acoust. Soc. Am. 78 3

    [7]

    Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 6 (in Chinese)[李整林, 鄢锦, 李风华, 郭良浩2002声学学报27 6]

    [8]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Proc. 43 2269

    [9]

    Bonnel J, Le Touz G, Nicolas B, Mars J I 2013 IEEE Signal Proc. Magazine 30 120

    [10]

    Bonnel J, Barbara N 2010 J. Acoust. Soc. Am. 128 719

    [11]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394

    [12]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese)[鹿力成, 马力2015物理学报64 024305]

    [13]

    Duan R, Chapman N R, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 70

    [14]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acoust. 41 1 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明2016声学学报41 1]

    [15]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese)[戚聿波2014物理学报63 044303]

    [16]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报65 104302]

    [17]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1992 Computational Ocean Acoustics (New York:Springer) pp385-389

  • [1]

    Peng Z H, Zhou J X 2004 IEEE J. Oceanic Engineer. 29 4

    [2]

    Jiang Y M, Chapman N R 2009 J. Acoust. Soc. Am. 125 4

    [3]

    Tindle C T 1982 J. Acoust. Soc. Am. 71 5

    [4]

    Potty G R, Miller J H, Lynch J F 2003 J. Acoust. Soc. Am. 114 4

    [5]

    Holmes J D, Carey W M, Dediu S M, Siegmann W L 2007 J. Acoust. Soc. Am. 121 5

    [6]

    Zhou J X 1985 J. Acoust. Soc. Am. 78 3

    [7]

    Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 6 (in Chinese)[李整林, 鄢锦, 李风华, 郭良浩2002声学学报27 6]

    [8]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Sign. Proc. 43 2269

    [9]

    Bonnel J, Le Touz G, Nicolas B, Mars J I 2013 IEEE Signal Proc. Magazine 30 120

    [10]

    Bonnel J, Barbara N 2010 J. Acoust. Soc. Am. 128 719

    [11]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 EL394

    [12]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese)[鹿力成, 马力2015物理学报64 024305]

    [13]

    Duan R, Chapman N R, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 70

    [14]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acoust. 41 1 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明2016声学学报41 1]

    [15]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese)[戚聿波2014物理学报63 044303]

    [16]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报65 104302]

    [17]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1992 Computational Ocean Acoustics (New York:Springer) pp385-389

  • [1] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [2] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰. 基于弹性变分模态提取的时间相关单光子计数信号去噪. 物理学报, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [3] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [4] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [5] 孔德智, 孙超, 李明杨. 浅海环境中基于模态衰减规律加权的子空间检测方法. 物理学报, 2020, 69(16): 164301. doi: 10.7498/aps.69.20191948
    [6] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [7] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [8] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [9] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [10] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [11] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究. 物理学报, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [12] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [13] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [14] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [15] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块离散小波变换的图像信息隐藏与盲提取算法. 物理学报, 2012, 61(8): 084203. doi: 10.7498/aps.61.084203
    [16] 王玉玲, 孙以泽, 彭乐乐, 徐洋. 基于Lambert W函数的太阳能电池组件参数确定法. 物理学报, 2012, 61(24): 248402. doi: 10.7498/aps.61.248402
    [17] 符懋敬, 庄建军, 侯凤贞, 宁新宝, 展庆波, 邵毅. 基于小波变换的人体步态序列提取. 物理学报, 2010, 59(6): 4343-4350. doi: 10.7498/aps.59.4343
    [18] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型. 物理学报, 2010, 59(7): 4837-4842. doi: 10.7498/aps.59.4837
    [19] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [20] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
计量
  • 文章访问数:  6247
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 修回日期:  2017-06-24
  • 刊出日期:  2017-10-05

/

返回文章
返回