搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于单水听器的浅海水下声源被动测距方法

李晓曼 朴胜春 张明辉 刘亚琴 周建波

引用本文:
Citation:

一种基于单水听器的浅海水下声源被动测距方法

李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波

A passive range method of underwater source based on single hydrophone

Li Xiao-Man, Piao Sheng-Chun, Zhang Ming-Hui, Liu Ya-Qin, Zhou Jian-Bo
PDF
导出引用
  • 针对浅海波导中宽带脉冲声源的被动测距问题,本文在群延迟理论的基础上,与warping变换处理相结合,提出了一种适用于浅海波导中宽带声源的单水听器被动测距方法.利用warping变换可以实现对脉冲声源接收信号各阶简正波的分离提取,对分离后的简正波进行时频分析处理可以得到各阶简正波到达时刻和频率之间的关系,即各阶简正波的频散曲线,从而得到任意两阶简正波到达接收水听器的时延差.海底相移参数P是描述海底地声参数的一个重要参量,包含了海底地声参数信息,在海底环境参数未知而P已知的情况下,利用P和简正波水平波数之间的关系可以求得任意两阶简正波的△ Sg,mn(群慢差).根据群延迟理论,利用得到的任意两阶简正波的时延和△ Sg,mn可实现利用单水听器对水下声源进行被动测距.本文提出的测距方法测量简单、计算方便,具有较强的实用意义.数值仿真和海上实验数据处理结果的测距误差都在10%以内,证明了该方法的有效性.
    Aiming at the passive impulse wideband source range problem in shallow water waveguides, a passive source range method with single hydrophone which is applied to the shallow water waveguide with a bottom of liquid semi-infinite space is presented in this paper by combining the group delay theory and warping transformation. The receive signal is composed of several normal modes, and each mode represents many characteristics of the waveguide environment. Warping transformation is a good tool which can achieve the separation and extraction of normal modes from the received signal, and it is also an unitary and reversible transformation, so the warped signal of each normal mode can be recovered completely. The dispersion curves of normal modes can be extracted by warping transformation, and the relation between arrival time and frequency of each order normal mode can also be calculated, and then the time delay of arriving hydrophone between arbitrary two different normal modes is obtained. According to the group delay theory, different order normal mode has different arrival time at the same frequency, and the arrival time of normal mode is determined at its group speed when the distance between the source and hydrophone is certain. So the propagation range can be estimated when the time delay and the slow group speed difference between two different normal modes are known. When the waveguide environmental parameters are known, the slow group speed difference of arbitrary two normal modes can be calculated by KRAKEN. However, when the bottom parameters are unknown, the bottom reflection phase shift parameter is an important parameter describing the acoustic parameters of the bottom, and it contains nearly all the bottom information, what is more, the bottom reflection phase shift parameter is also a parameter that can be extracted by some experimental data easily. When the depth and the average sound speed of the water column are known, the slow group speed difference between two order normal modes can be represented by the seafloor phase shift parameter. Therefore, the source range can be represented by the bottom reflection phase shift parameter, the sea depth and the mean sound speed in the waveguide, and under this condition, the source location can be estimated by one single hydrophone. The effectiveness and accuracy of the method are proved by the numerical simulation results and sea experimental data processing, in which the signals are both received by a single hydrophone. The sea experimental data contain linear frequency modulation impulse source signal and explosion sound source signal, and the mean relative error of range estimation is less than 10%.
      通信作者: 张明辉, zhangminghui@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:112340002)和国家自然科学基金(批准号:11474073)资助的课题.
      Corresponding author: Zhang Ming-Hui, zhangminghui@hrbeu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No.112340002) and the National Natural Science Foundation of China (Grant No. 11474073).
    [1]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [2]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [3]

    Hassab J 1983 IEEE J. Oceanic Eng. 8 136

    [4]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [5]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [6]

    Brown J C, Hodgins D A, Miller P J O 2006 J. Acoust. Soc. Am. 119 EL34

    [7]

    Ioana C, Quinquis A, Stephan Y 2006 IEEE J. Oceanic Eng. 31 628

    [8]

    Bonnel J, Dosso S E, Chapman R N 2013 J. Acoust. Soc. Am. 134 120

    [9]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [10]

    Lin Y T, Newhall A E, Lynch J F 2012 J. Acoust. Soc. Am. 131 1798

    [11]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China:Phys. Mech. Astron. 57 225

    [12]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302(in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报 65 104302]

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Zhang Y 2014 Acta Phys. Sin. 63 044303(in Chinese)[戚聿波, 周士弘, 张仁和, 张波, 张云2014物理学报 63 044303]

    [14]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [15]

    Bonnel J, Thode A M, Blackwell S B, Kim K, Michael M A 2014 J. Acoust. Soc. Am. 136 145

    [16]

    Zhang R H, Li F H 1999 Sci. China A 29 241(in Chinese)[张仁和, 李风华1999中国科学A辑 29 241]

    [17]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin:Harbin Engineering University Press) pp628-640(in Chinese)[汪德昭, 尚尔昌2009水声学(第二版) (哈尔滨:哈尔滨工程大学出版社)第628–640页]

    [18]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [19]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [20]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[牛海强2014博士学位论文(北京:中国科学院大学)]

    [22]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [23]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302(in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波2017物理学报 66 094302]

  • [1]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [2]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [3]

    Hassab J 1983 IEEE J. Oceanic Eng. 8 136

    [4]

    Zhao Z D, Wang N, Gao D Z, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [5]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [6]

    Brown J C, Hodgins D A, Miller P J O 2006 J. Acoust. Soc. Am. 119 EL34

    [7]

    Ioana C, Quinquis A, Stephan Y 2006 IEEE J. Oceanic Eng. 31 628

    [8]

    Bonnel J, Dosso S E, Chapman R N 2013 J. Acoust. Soc. Am. 134 120

    [9]

    Zeng J, Chapman N R, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [10]

    Lin Y T, Newhall A E, Lynch J F 2012 J. Acoust. Soc. Am. 131 1798

    [11]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China:Phys. Mech. Astron. 57 225

    [12]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302(in Chinese)[王冬, 郭良浩, 刘建军, 戚聿波2016物理学报 65 104302]

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Zhang Y 2014 Acta Phys. Sin. 63 044303(in Chinese)[戚聿波, 周士弘, 张仁和, 张波, 张云2014物理学报 63 044303]

    [14]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119

    [15]

    Bonnel J, Thode A M, Blackwell S B, Kim K, Michael M A 2014 J. Acoust. Soc. Am. 136 145

    [16]

    Zhang R H, Li F H 1999 Sci. China A 29 241(in Chinese)[张仁和, 李风华1999中国科学A辑 29 241]

    [17]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin:Harbin Engineering University Press) pp628-640(in Chinese)[汪德昭, 尚尔昌2009水声学(第二版) (哈尔滨:哈尔滨工程大学出版社)第628–640页]

    [18]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [19]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [20]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [21]

    Niu H Q 2014 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[牛海强2014博士学位论文(北京:中国科学院大学)]

    [22]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [23]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302(in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波2017物理学报 66 094302]

  • [1] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [3] 刘萍, 徐恒睿, 杨建荣. Boussinesq方程的Lax对、Bäcklund变换、对称群变换和Riccati展开相容性. 物理学报, 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [4] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [5] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [6] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [7] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [8] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [9] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [10] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [11] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究. 物理学报, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [12] 张瑜, 刘秉琦, 闫宗群, 华文深, 李刚. 背景辐射对被动测距精度影响分析及实验研究. 物理学报, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [13] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [14] 安永泉, 李晋华, 王志斌, 王召巴. 基于大气氧光谱吸收特性的单目单波段被动测距. 物理学报, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
    [15] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [16] 张敬, 掌蕴东, 张学楠, 喻波, 王金芳, 王楠, 田赫, 袁萍. 光学谐振系统中慢光特性研究. 物理学报, 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [17] 贾飞蕾, 徐 伟. 一类参数不确定混沌系统的延迟同步. 物理学报, 2007, 56(6): 3101-3106. doi: 10.7498/aps.56.3101
    [18] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [19] 贾亚青, 朱晓农. 双折射滤光片的色散特性研究. 物理学报, 2004, 53(9): 3065-3070. doi: 10.7498/aps.53.3065
    [20] 侯伯宇. 散射矩阵的角分布不变变换群. 物理学报, 1964, 20(7): 691-695. doi: 10.7498/aps.20.691
计量
  • 文章访问数:  4737
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-09-05

/

返回文章
返回