搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海波导中低频声场干涉简正模态的判别

孟瑞洁 周士弘 李风华 戚聿波

引用本文:
Citation:

浅海波导中低频声场干涉简正模态的判别

孟瑞洁, 周士弘, 李风华, 戚聿波

Identification of interference normal mode pairs of low frequency sound in shallow water

Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo
PDF
HTML
导出引用
  • 浅海波导中, 低频宽带声场中干涉简正模特性可用于声源定位和环境参数反演, 然而实际应用中由于存在声源位置不确知、某些简正模激发较弱、模型参数选取失配等因素的制约, 导致干涉简正模阶数的判别存在问题. 结合水平线列阵应用, 根据阵列接收信号中干涉简正模成分的波束输出角度与距离无关但与干涉简正模阶数和频率相关的波导固有频散特性, 提出了一种基于阵元域接收信号自相关函数WARPING变换过滤干涉简正模, 进而对其波束输出角度进行模基匹配判别简正模阶数的方法. 利用2011年北黄海海域声学实验中坐底布放的32元水平线列阵接收的爆炸声脉冲信号, 对方法进行了验证. 并由仿真数据分析了声速剖面、海底参数和水深等参数失配及信噪比对方法性能的影响. 结果表明水深变化14%以上对干涉简正模波束输出角度的提取值影响最大, 可引起方法失效; 声速剖面和海底参数在一定失配范围内对方法性能的影响可忽略; 方法要求单阵元信噪比大于2 dB.
    The interference characteristics of normal modes in low-frequency broadband sound can be applied to source localization and environmental parameter inversion in shallow water. However, the identification ambiguity of interference normal mode pairs generally occurs in practical applications due to unknown source position, some weakly-excited normal modes, mismatched environmental model, etc. For the applications of a horizontal line array, a model-based processing approach is proposed to determine the orders of the interference normal mode pairs based on the intrinsic dispersion characteristics of interference normal mode pairs in the received signals and the range-independent properties of the array beam output angles. Firstly, the normal mode pair filtering is achieved by using the WARPING transform of the signal autocorrelation function in the element domain of the horizontal line array. Then, the arrival angles of the filtered interference normal mode pairs are estimated by using array beamforming. Finally, the estimated beam output angles are matched with the replica values computed by sound field model. The approach is verified by using the explosive pulse signals received by the seafloor-deployed 32-element horizontal line array at the North Yellow Sea in 2011. Furthermore, some simulations are involved to analyze the effects of environmental parameter mismatches including water sound speed profile, sea bottom parameters and water depth on the identification performance of interference normal mode pairs. The results show that the water depth is a major factor influencing the extracted values of the beam output angles of interference normal mode pairs. The approach might fail when the water depth mismatch exceeds 14% of the practical value. However, the effects of water sound speed profile mismatch and sea bottom parameters mismatch are negligible. The effect of signal-to-noise ratio in the element domain on a horizontal line array is also simulated in order to analyze the limitation of identification performance, which shows that the required signal-to-noise ratio in the element domain should be more than 2 dB.
      通信作者: 周士弘, shih_zhou@mail.ioa.ac.cn
    • 基金项目: 中国科学院前沿科学重点研究项目(批准号: QYZDY-SSW-SLH005)和国家自然科学基金(批准号: 11804362, 11804364)资助的课题.
      Corresponding author: Zhou Shi-Hong, shih_zhou@mail.ioa.ac.cn
    • Funds: Project supported by the State Key Program for Frontier Science Research of Chinese Academy of Sciences, China (Grant No. QYZDY-SSW-SLH005) and the National Natural Science Foundation of China (Grant Nos. 11804362, 11804364).
    [1]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719Google Scholar

    [2]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 EL101Google Scholar

    [3]

    牛海强, 何利, 李整林, 张仁和, 南明星 2014 声学学报 39 1

    Niu H Q, He L, Li Z L, Zhang R H, Nan M X 2014 Acta Acoust. 39 1

    [4]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471Google Scholar

    [5]

    Li F H, Zhang B, Guo Y G 2014 Chin. Phys. Lett. 31 47

    [6]

    Bonnel J, Ying-Tsong L, Eleftherakis D, Goff J A, Dosso S, Chapman R, Miller J H, Potty G R 2018 J. Acoust. Soc. Am. 143 405Google Scholar

    [7]

    李佳蔚, 鹿力成, 郭圣明, 马力 2017 物理学报 66 204301Google Scholar

    Li J W, Lu L C, Guo S M, Ma L 2017 Acta Phys. Sin. 66 204301Google Scholar

    [8]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 J. Adv. Signal Proc. 2010 304103Google Scholar

    [9]

    王冬, 郭良浩, 刘建军, 戚聿波 2016 物理学报 65 104302Google Scholar

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302Google Scholar

    [10]

    Bonnel J, Thode A 2013 J. Acoust. Soc. Am. 19 070066

    [11]

    戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303Google Scholar

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303Google Scholar

    [12]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [13]

    李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波 2017 物理学报 66 184301Google Scholar

    Li X M, Piao S C, Zhang M H, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 184301Google Scholar

    [14]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225Google Scholar

    [15]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Process. 43 2269Google Scholar

    [16]

    Touzé L, Nicolas B, Mars J I, Lacoume J L 2009 IEEE Trans. Signal Process. 57 1783Google Scholar

    [17]

    戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 64 074301Google Scholar

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 074301Google Scholar

    [18]

    戚聿波, 周士弘, 张仁和 2016 物理学报 65 134301Google Scholar

    Qi Y B, Zhou S H, Zhang R H 2016 Acta Phys. Sin. 65 134301Google Scholar

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer) p408

    [20]

    Bender C M, Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p276

    [21]

    戚聿波, 周士弘, 任云, 刘建军, 王德俊, 冯希强 2015 声学学报 40 144

    Qi Y B, Zhou S H, Ren Y, Liu J J, Wang D J, Feng X Q 2015 Acta Acoust. 40 144

    [22]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • 图 1  不同源深时接收信号自相关函数WARPING变换谱图 (a)源深33 m; (b)源深60 m

    Fig. 1.  WARPING transform spectral of received signal autocorrelation functions at different source depths: (a) Source depth 33 m; (b) source depth 60 m.

    图 2  干涉简正模波束输出角度理论值与提取值的对比

    Fig. 2.  Comparison of beam output angles between the theoretical and extracted values of the interference normal mode pairs.

    图 3  声速剖面

    Fig. 3.  Sound speed profile.

    图 4  WARPING变换频谱 (a)全部信号; (b)距离25.26 km 处接收的数据

    Fig. 4.  WARPING transform spectrum: (a) All signals; (b)the signal at range of 25.26 km.

    图 5  距离25.26 km处信号两组干涉简正模成分波束输出角度提取值与理论值的对比 (a)第一组干涉简正模; (b)第二组干涉简正模

    Fig. 5.  Comparison of the measured and computed beam output angles of the normal mode pairs at the range of 25.26 km: (a) The first normal mode pair; (b) the second normal mode pair.

    图 6  (1, 2)阶干涉简正模判别结果及其概率 (a)判别结果; (b)概率统计结果

    Fig. 6.  The discrimination of normal mode pair (1, 2) and its probability: (a) The discrimination of result; (b) probability.

    图 8  (1, 4)阶干涉简正模判别结果及其概率 (a)判别结果; (b)概率统计结果

    Fig. 8.  The discrimination of normal mode pair (1, 4) and its probability: (a) The discrimination of result; (b) probability.

    图 7  (1, 3)阶干涉简正模判别结果及其概率 (a)判别结果; (b)概率统计结果

    Fig. 7.  The discrimination of normal mode pair (1, 3) and its probability: (a) The discrimination of result;(b)probability.

    图 9  环境参数失配对(1,2)阶干涉简正模波束输出角度值的影响 (a)海水声速剖面失配; (b)海底参数失配; (c)海深失配

    Fig. 9.  The effect of environmental parameter mismatches on the beam output angles of the normal mode pair (1,2): (a)Sound speed profile mismatch; (b) sea bottom parameter mismatch; (c)water depth mismatch.

    图 10  信噪比对干涉简正模成分波束输出角度提取值的影响 (a)角度差均方根值与信噪比关系; (b) 2 dB时角度提取值与理论值

    Fig. 10.  The effect of SNR on the beam output angles of the normal mode pair: (a) The mean square error of the angle varies with SNR; (b) the extracted and theretical values at 2 dB.

    表 1  海底底质参数选择

    Table 1.  Sea bottom parameters

    海底声速/m·s–1海底密度/g·cm–3吸收系数/dB·λ–1
    15301.200.30
    15501.500.20
    16061.650.09
    17001.800.05
    下载: 导出CSV
  • [1]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719Google Scholar

    [2]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 EL101Google Scholar

    [3]

    牛海强, 何利, 李整林, 张仁和, 南明星 2014 声学学报 39 1

    Niu H Q, He L, Li Z L, Zhang R H, Nan M X 2014 Acta Acoust. 39 1

    [4]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471Google Scholar

    [5]

    Li F H, Zhang B, Guo Y G 2014 Chin. Phys. Lett. 31 47

    [6]

    Bonnel J, Ying-Tsong L, Eleftherakis D, Goff J A, Dosso S, Chapman R, Miller J H, Potty G R 2018 J. Acoust. Soc. Am. 143 405Google Scholar

    [7]

    李佳蔚, 鹿力成, 郭圣明, 马力 2017 物理学报 66 204301Google Scholar

    Li J W, Lu L C, Guo S M, Ma L 2017 Acta Phys. Sin. 66 204301Google Scholar

    [8]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 J. Adv. Signal Proc. 2010 304103Google Scholar

    [9]

    王冬, 郭良浩, 刘建军, 戚聿波 2016 物理学报 65 104302Google Scholar

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302Google Scholar

    [10]

    Bonnel J, Thode A 2013 J. Acoust. Soc. Am. 19 070066

    [11]

    戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303Google Scholar

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303Google Scholar

    [12]

    李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 物理学报 66 094302Google Scholar

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302Google Scholar

    [13]

    李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波 2017 物理学报 66 184301Google Scholar

    Li X M, Piao S C, Zhang M H, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 184301Google Scholar

    [14]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225Google Scholar

    [15]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Process. 43 2269Google Scholar

    [16]

    Touzé L, Nicolas B, Mars J I, Lacoume J L 2009 IEEE Trans. Signal Process. 57 1783Google Scholar

    [17]

    戚聿波, 周士弘, 张仁和, 任云 2015 物理学报 64 074301Google Scholar

    Qi Y B, Zhou S H, Zhang R H, Ren Y 2015 Acta Phys. Sin. 64 074301Google Scholar

    [18]

    戚聿波, 周士弘, 张仁和 2016 物理学报 65 134301Google Scholar

    Qi Y B, Zhou S H, Zhang R H 2016 Acta Phys. Sin. 65 134301Google Scholar

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (NewYork: Springer) p408

    [20]

    Bender C M, Orszag S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill) p276

    [21]

    戚聿波, 周士弘, 任云, 刘建军, 王德俊, 冯希强 2015 声学学报 40 144

    Qi Y B, Zhou S H, Ren Y, Liu J J, Wang D J, Feng X Q 2015 Acta Acoust. 40 144

    [22]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法. 物理学报, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [3] 王宣, 孙超, 李明杨, 张少东. 不确定浅海环境中水平阵角度域子空间检测. 物理学报, 2022, 71(8): 084304. doi: 10.7498/aps.71.20211742
    [4] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [5] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计. 物理学报, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [6] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [7] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [8] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [9] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [10] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [11] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [12] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [13] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [14] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [15] 鹿力成, 马力. 基于Warping变换的波导时频分析. 物理学报, 2015, 64(2): 024305. doi: 10.7498/aps.64.024305
    [16] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [17] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [18] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [19] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  8236
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-04-23
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回