搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法

李晓曼 张明辉 张海刚 朴胜春 刘亚琴 周建波

引用本文:
Citation:

一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法

李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波

A passive range method of broadband impulse source based on matched-mode processing

Li Xiao-Man, Zhang Ming-Hui, Zhang Hai-Gang, Piao Sheng-Chun, Liu Ya-Qin, Zhou Jian-Bo
PDF
导出引用
  • 针对浅海波导中宽带脉冲声源的被动测距问题,本文在模态匹配和匹配场处理定位方法的基础上,提出了一种适用于具有液态半无限空间海底的浅海波导中声源的单水听器被动测距方法.利用warping变换可以对脉冲声源接收信号的各阶简正波实现有效分离,由此得到各阶简正波的频域信号.海底相移参数是描述海底地声参数的一个重要参量,包含了海底地声参数信息,而各阶简正波的水平波数可以通过含有海底相移参数的表达式来表达.此外,由于声速剖面对简正波的各阶水平波数具有相近的影响,因此通过对任意两阶简正波进行联合处理,可以近似消除声速剖面对简正波水平波数差的影响.任意两阶简正波的水平波数差只近似用于海底相移参数、海深以及波导中平均声速三个参数有关,可以简单、快速地计算相应拷贝场,然后通过建立代价函数并对简正波模态进行匹配,可以实现对水下脉冲声源的被动测距.与传统的模态匹配定位方法相比,本文提出的方法既不需要使用水听器阵,又可以简单、快速地计算出拷贝场.数值仿真和海上实验数据处理结果的测距误差都在10%以内,证明了该方法的有效性.
    Aiming at the passive impulse wideband source range problem in shallow water waveguides, a passive source range method with single hydrophone based on the matched mode processing is presented in this paper, the method is applied to the shallow water waveguide with a bottom of liquid semi-infinite space. Warping transformation is a useful tool to separate the normal modes of the received signals of the impulse source, and the frequency domain signals of each order can be obtained. The seafloor phase shift parameter is an important parameter describing the acoustic parameters of the seafloor, which contains nearly all the information about sea floor, what is more, the seafloor phase shift parameter is also an parameter that can be obtained by some experimental data easily. Each order normal mode can be represented by the expression that contains the phase shift parameter of sea floor. What is more, the influence of sound speed profile of the waveguide on eigenvalue can be approximately eliminated by jointly processing arbitrary two-order normal modes. Sound speed profile has a similar influence on eigenvalue of each order normal mode, therefore, the difference in the eigenvalues between arbitrary two-order normal modes can be approximated represented by the phase shift parameter of the sea-floor, the sea depth and the mean speed in the waveguide. In this way, the phase replica which consists of the eigenvalue difference of each two-order mode can be calculated simply and quickly, and then by constructing cost function and matching normal mode, the underwater impulse source can be located. Compared with the traditional method of processing matched mode and the method of processing matched fields, the method presented in this paper has two advantages: using warping transformation instead of hydrophone arrays to separate the normal modes; the replica can be calculated quickly and easily, depending on a small number of environmental parameters of waveguide. The effectiveness and accuracy of the method are proved by the results of numerical simulation and sea experimental data processing, in which the signals are both received by a single hydrophone. The sea experimental data contain linear frequency modulation impulse source signal and explosion sound source signal, and the mean relative error of range estimation is less than 10%. In the end of this paper, the range estimation error is analyzed, indicating that the error originates mainly from the mode phase parts besides the phase part of Hankel function. Consequently, finding the ways to reduce the range estimation error is an important project in the future.
      通信作者: 张海刚, zhanghaigang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474073)和水声技术重点实验室开放基金(批准号:SSKF2015002)资助的课题.
      Corresponding author: Zhang Hai-Gang, zhanghaigang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474073) and the Opening fund of Acoustics Sciences and Technology Laboratory, China (Grant No. SSKF2015002).
    [1]

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [2]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310

    [5]

    Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365

    [6]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [7]

    Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437

    [8]

    Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039

    [9]

    Yang T C 1989 J. Acoust. Soc. Am. 85 146

    [10]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218

    [11]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [12]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [13]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [14]

    Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303

    [15]

    Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [16]

    Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 物理学报 65 214302]

    [17]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [19]

    Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145

    [20]

    Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]

    [21]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92

    [23]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [24]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [25]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [26]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]

    [27]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55

    [28]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [29]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 物理学报 65 104302]

    [30]

    Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72

  • [1]

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [黄益旺 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [2]

    Yang T C 1990 J. Acoust. Soc. Am. 87 2072

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese) [姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Gary R W, Robert A K, Paul J V 1988 J. Acoust. Soc. Am. 84 310

    [5]

    Lu I T, Chen H Y, Voltz P 1993 J. Acoust. Soc. Am. 93 1365

    [6]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089

    [7]

    Barbara N, Grgoire L T, Jrme I 2008 IEEE ICASSP 56 2437

    [8]

    Chen H Y, Lu I T 1992 J. Acoust. Soc. Am. 92 2039

    [9]

    Yang T C 1989 J. Acoust. Soc. Am. 85 146

    [10]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218

    [11]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [12]

    Li Q Q 2016 Chin. Phys. Lett. 33 034301

    [13]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [14]

    Peng Z H, Li Z L, Wang G X 2010 Chin. Phys. Lett. 27 114303

    [15]

    Zhao Z D, Wang N, Gao D, Wang H Z 2010 Chin. Phys. Lett. 27 064301

    [16]

    Guo X L, Yang K D, Ma Y L, Yang Q L 2016 Acta Phys. Sin. 65 214302 (in Chinese) [郭晓乐, 杨坤德, 马远良, 杨秋龙 2016 物理学报 65 214302]

    [17]

    Bonnel J, Chapman N R 2011 J. Acoust. Soc. Am. 130 101

    [18]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [19]

    Bonnel J, Aaron M T, Susanna B B, Katherine K, Michael A 2014 J. Acoust. Soc. Am. 136 145

    [20]

    Liu B S, Lei J Y 2010 Theory of UnderwaterAcoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp24-30 (in Chinese) [刘伯胜, 雷家煜 2010 水声学原理(第二版) (哈尔滨: 哈尔滨工程大学出版社)第2430页]

    [21]

    Wang D Z, Shang E C 2009 Underwater Acoustics (2nd Ed.) (Harbin: Harbin Engineering University Press) pp628-640 (in Chinese) [汪德昭, 尚尔昌 2009 水声学(第二版) (哈尔滨: 哈尔滨工程大学出版社)第628640页]

    [22]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics Press) pp87-92

    [23]

    Bonnel J, Gervaise C, Nicolas B, Mars J I 2010 J. Acoust. Soc. Am. 128 719

    [24]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [25]

    Touze G L, Nicolas B, Mars J I 2009 IEEE Trans. Signal Proc. 57 1783

    [26]

    Niu H Q 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [牛海强 2014 博士学位论文 (北京: 中国科学院大学)]

    [27]

    Yang S E 2009 Theory of Underwater Sound Propagation (Harbin: Harbin Engineering University Press) pp49-55

    [28]

    Shang E C, Wu J R, Zhao Z D 2012 J. Acoust. Soc. Am. 131 3691

    [29]

    Wang D, Guo L H, Liu J J, Qi Y B 2016 Acta Phys. Sin. 65 104302 (in Chinese) [王冬, 郭良浩, 刘建军, 戚聿波 2016 物理学报 65 104302]

    [30]

    Kevin L C, Henrik S 2011 J. Acoust. Soc. Am. 130 72

  • [1] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法. 物理学报, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [2] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [3] 王宣, 孙超, 李明杨, 张少东. 不确定浅海环境中水平阵角度域子空间检测. 物理学报, 2022, 71(8): 084304. doi: 10.7498/aps.71.20211742
    [4] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [5] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [6] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [7] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [8] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [9] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [10] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [12] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [13] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [14] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [15] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [16] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [17] 张瑜, 刘秉琦, 闫宗群, 华文深, 李刚. 背景辐射对被动测距精度影响分析及实验研究. 物理学报, 2015, 64(3): 034216. doi: 10.7498/aps.64.034216
    [18] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究. 物理学报, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [19] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [20] 安永泉, 李晋华, 王志斌, 王召巴. 基于大气氧光谱吸收特性的单目单波段被动测距. 物理学报, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
计量
  • 文章访问数:  6301
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2017-01-05
  • 刊出日期:  2017-05-05

/

返回文章
返回